• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Arduino Projects / Arduino Pure Sine Wave Inverter Circuit with Full Program Code
warning message: electricity is dangerous, proceed with caution
arduino

Arduino Pure Sine Wave Inverter Circuit with Full Program Code

Last Updated on May 24, 2025 by Swagatam 636 Comments

This article explains a simple pure sine wave inverter circuit using Arduino, which could be upgraded to achieve any desired power output as per the user's preference.

Table of Contents
  • Circuit Operation
  • Powering the Arduino Board
  • Waveform Images for Arduino SPWM
  • Using BJT Buffer Stage as Level Shifter
  • Program Code for the above Arduino Sine Wave Inverter Circuit
  • Delay Effect
  • A More Reliable Delay ON Timer
  • Adding an Automatic Voltage Regulator
  • How to Setup
  • The Complete Circuit Diagram

Circuit Operation

In the last article I have explained how to generate sine wave pulse width modulation or SPWM though Arduino, we are going to use the same Arduino board to make the proposed simple pure sine wave inverter circuit. The design is actually extremely straightforward, as shown in the following figure.

You just have to program the arduino board with the SPWM code as explained in the previous article, and hook it up with some of the external devices.

You may also want to read: H-Bridge Sine Wave Inverter Circuit

Arduino Pure Sine Wave Inverter Circuit

Pin#8 and pin#9 generate the SPWMs alternately and switch the relevant mosfets with the same SPWM pattern.

The mosfst in turn induce the transformer with high current SPWM waveform using the battery power, causing the secondary of the trafo to generate an identical waveform but at the mains AC level.

The proposed Arduino inverter circuit could be upgraded to any preferred higher wattage level, simply by upgrading the mosfets and the trafo rating accordingly, alternatively you can also convert this into a full bridge or an H-bridge sine wave inverter

Powering the Arduino Board

In the diagram the Arduino board could be seen supplied from a 7812 IC circuit, this could be built by wiring a standard 7812 IC in the following manner. The IC will ensure that the input to the Arduino never exceeds the 12V mark, although this might not be absolutely critical, unless the battery is rated over 18V.

If you have any questions regarding the above SPWM inverter circuit using a programmed Arduino, please feel free to ask them through your valuable comments.

Waveform Images for Arduino SPWM

Arduino Pure Sine Wave Inverter Circuit SPWM waveform

Image of SPWM waveform as obtained from the above Arduino inverter design (Tested and Submitted By Mr. Ainsworth Lynch)

UPDATE:

Using BJT Buffer Stage as Level Shifter

Since an Arduino board will produce a 5V output, it may not be an ideal value for driving mosfets directly.

Therefore an intermediate BJT level shifter stage may be required for raising the gate level to 12V so that the mosfets are able to operate correctly without causing unnecessary heating up of the devices,. The updated diagram (recommended) can be witnessed below:

simple Arduino sinewave inverter circuit using SPWM
The above design is the recommended one! (Just make sure to add the delay timer, as I have explained below!!).

UPDATE: Get this Improved Arduino SPWM Code

Program Code for the above Arduino Sine Wave Inverter Circuit

// By Swagatam
void setup(){
pinMode(8, OUTPUT);
pinMode(9, OUTPUT);
}
void loop(){
digitalWrite(8, HIGH);
delayMicroseconds(500);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(750);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(1250);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(2000);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(1250);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(750);
digitalWrite(8, LOW);
delayMicroseconds(500);
digitalWrite(8, HIGH);
delayMicroseconds(500);
digitalWrite(8, LOW);
//......
digitalWrite(9, HIGH);
delayMicroseconds(500);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(750);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(1250);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(2000);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(1250);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(750);
digitalWrite(9, LOW);
delayMicroseconds(500);
digitalWrite(9, HIGH);
delayMicroseconds(500);
digitalWrite(9, LOW);
}
//-------------------------------------//

Video Clip

Parts List

All resistors are 1/4 watt, 5% CFR

  • 10K = 4
  • 1K = 2
  • BC547 = 4nos
  • Mosfets IRF540 = 2nos
  • Arduino UNO = 1
  • Transformer = 9-0-9V/220V/120V current as per requirement.
  • Battery = 12V, Ah value as per requirement

Delay Effect

To ensure that the mosfet stages initiate with a delay during the Arduino booting or start up, you may modify left side BC547 transistors into delay ON stages, as shown below. This will safeguard the mosfets and prevent them from burning during power switch ON Arduino booting.

PLEASE TEST AND CONFIRM THE DELAY OUTPUT WITH AN LED AT THE COLLECTOR, BEFORE FINALIZING THE INVERTER.
FOR INCREASING THE DELAY YOU CAN INCREASE THE 10K VALUE TO 100K

A More Reliable Delay ON Timer

If you are not comfortable with the response of the above passive delay ON timer circuit, you can employ the following configuration using BJTs and a relay. This design is extremely reliable and will effectively protect your Arduino and the inverter from burning due to a malfunctioning delay effect.

Just add this to the above inverter configuration.

Adding an Automatic Voltage Regulator

Just like any other inverter the output from this design can rise to unsafe limits when the battery is fully charged.

To control this an automatic voltage regulator could be employed as shown below.

The BC547 collectors should be connected to the bases of the left side BC547 pair, which are connected to the Arduino via 10K resistors.

Arduino sinewave output correction automatic

For an isolated version of voltage correction circuit we can modify the above circuit with a transformer, as shown below:

Make sure to join the negative line with the battery negative

How to Setup

To set up the automatic voltage correction circuit, feed a stable 230V or 110V as per your inverter specs to the input side of the circuit.

Next, adjust the 10k preset carefully such that the red LEDs just light up. That's all, seal the preset and connect the circuit with the above Arduino board for implementing the intended automatic output voltage regulation.

The Complete Circuit Diagram

The complete diagram using the automatic voltage regulator and the delay ON timer would look like this:

You'll also like:

  • 1.  Types of Arduino Boards with Specifications
  • 2.  How to Make LED Air Pollution Meter Circuit with Arduino
  • 3.  Arduino SPWM Generator Circuit – Code Details and Diagram
  • 4.  Different Types of UPS systems – Explained
  • 5.  Transformerless UPS Circuit for Computers (CPU)
  • 6.  Solving Inverter “No Load Auto-Shutdown” Problem

Filed Under: Arduino Projects, Inverter Circuits Tagged With: Arduino, Full, Inverter, Pure, Sine, Wave

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « Arduino SPWM Generator Circuit – Code Details and Diagram
Next Post: Arduino Frequency Meter Using 16×2 Display »
Subscribe
Notify of
guest
guest
636 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (84)
  • Datasheets and Components (105)
  • Electronics Theory (140)
  • Free Energy (38)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (89)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • SMPS and Converters (31)
  • Solar Controller Circuits (60)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Simple Buck Converter Circuits using Transistors
    • David on Simple Buck Converter Circuits using Transistors
    • Swagatam on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Mark on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Swagatam on Boost Converter Calculator

    © 2025 · Swagatam Innovations