The post explains 2 simple universal current controller circuits which can be used for safely operating any desired high watt LED.

The universal high watt LED current limiter circuit explained here can be integrated with any crude DC supply source for getting an outstanding over current protection for the connected high watt LEDs.

## Why Current Limiting is Crucial for LEDs

We know that LEDs are highly efficient devices which are able to produce dazzling illuminations at relatively lower consumption, however these devices are highly vulnerable especially to heat and current which are complementary parameters and affect an LED performance.

Especially with high watt LEds which tend to generate considerable heat, the above parameters become crucial issues.

If an LED is driven with higher current it will tend to get hot beyond tolerance and get destroyed, while conversely if the heat dissipation is not controlled the LED will start drawing more current until it gets destroyed.

In this blog we have studied a few versatile work horse ICs such as LM317, LM338, LM196 etc which are attributed with many outstanding power regulating capabilities.

LM317 is designed for handling currents up to 1.5 amps, LM338 will allow a maximum of 5 amps while LM196 is assigned for generating as high as 10 amps.

Here we utilize these devices for current limiting application for LEds in the most simplest possible ways:

The first circuit given below is simplicity in itself, using just one calculated resistor the IC can be configured as an accurate current controller or limiter.

### Calculating the Current Limiter Resistor

The figure shows a variable resistor for setting the current control, however R1 can be replaced with a fixed resistor by calculating it using the following formula:

**R1 (Limiting Resistor) = Vref/current**

or **R1 = 1.25/current.**

Current may be different for different LEDs and can be calculated by dividing the optimal forward voltage with its wattage, for example for a 1watt LED, the current would be 1/3.3 = 0.3amps or 300 ma, current for other LEDs may be calculated in similar fashion.

The above figure would support a maximum of 1.5 amps, for larger current ranges, the IC may be simply replaced with an LM338 or LM196 as per the LED specs.

### Application Circuits

**Making a current controlled LED tubelight.**

The above circuit can be very efficiently used for making precision current controlled LED tube light circuits.

A classic example is illustrated below, which can be easily modified as per the requirements and LED specs.

#### 30 watt Constant Current LED Driver Circuit

The series resistor connected with the three LEDs is calculated by using the following formula:

**R = (supply voltage – Total LED forward voltage) / LED current**

R = (12 - 3.3+3.3+3.3)/3amps

R= (12 - 9.9)/3

R = 0.7 ohms

R watts = V x A = (12-9.9) x 3 = 2.1 x 3 = 6.3 watts

## Restricting LED Current using Transistors

In case you do not have an access to the IC LM338 or if the device unavailable in your area, then you could simply configure a few transistors or BJTs and form an effective current limiter circuit for your LED.

The schematic for the current control circuit using transistors can be seen below:

#### PNP Version of the Above Circuit

### How to Calculate the resistors

In order to determine R1 you may use the following formula:

**R1 = (Us - 0.7)Hfe/Load Current,**

where Us = supply voltage, Hfe = T1 forward current gain, Load current = LED current = 100W/35V = 2.5 amps

R1 = (35 - 0.7)30/2.5= 410 Ohms,

Wattage for the above resistor would be P = V^{2} / R = 35 x 35 / 410 = 2.98 or 3 watts

**R2 may be calculated as shown below:**

**R2 = 0.7/LED current**

R2 = 0.7/2.5 = 0.3 ohms,

wattage may be calculated as = 0.7 x 2.5 = 2 watts

#### Using a Mosfet

The above BJT based current limit circuit can be improved by replacing T1 with a mosfet as shown below:

The calculations will remain the same as discussed above for the BJT version

### Variable Current Limiter Circuit

We can easily convert the above fixed current limiter into a versatile variable current limiter circuit.