• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Electronic Components / IC LM338 Application Circuits

IC LM338 Application Circuits

Last Updated on May 6, 2020 by Swagatam 86 Comments

In this post we will try to analyze a few interesting IC LM338 based power supply circuits and related application circuits which can used by all hobbyists and professional for their day to day electronic circuits and experiments

Introduction

The IC LM338 by TEXAS INSTRUMENTS, is a versatile IC which can be wired in numerous different ways for obtaining high quality power supply circuit configurations.

The following circuit examples simply depict few of the very interesting useful power supply circuits using this IC.

Let's study each circuit diagram in details:

Simple Adjustable Voltage Power Supply Circuit

The first circuit shows the typical wiring format done around the IC. The circuit provides an adjustable output right from 1.25V to the maximum applied input voltage which shouldn't be more than 35 vots.

R2 is used for varying the output voltage continuously.

caution electricity can be dangerous

Simple 5 Amp Regulated Power Supply Circuit

This circuit produces an output that may be equal to the input supply voltage but the current is well regulated and can never exceed the 5 Amp mark. R1 is precisely selected so as to maintain a safe 5 amp maximum current limit that can be withdrawn from the circuit.

15 Amp, Variable Voltage Regulator Circuit

The IC LM 338 alone is specified for handling a maximum of 5 Amp of current, however if the IC is needed to handle higher currents, in the region of 15 amps, it can well be modified to produce that much of current with the appropriate modifications as shown below.

The circuit utilizes three IC LM338 for the intended implementations with output voltage that's adjustable as explained for the first circuit. R8 is used for the voltage adjustment operations.

Digitally Adjustable Power Supply Circuit:

In the above designs, the power supply utilized a pot for implementing the voltage adjustment procedure, the below given design incorporates discrete transistors which can be digitally triggered separately for obtaining the relevant voltage levels at the outputs.

The collector resistance values are chosen in an incremental order so that a correspondingly varying voltages can be selected and becomes available through the external triggers.

Light Controller Circuit

Other than power supplies, LM338 can also be used as a light controller. The circuit shows a very simple design where a phototransistor replaces the resistor which normally acts as the component for adjusting the output voltage.

The light which needs to be controlled is powered by the output of the IC and its light is allowed to fall on this phototransistor.
As the light increases the value of the photo-transistor decreases which in turn pulls the ADJ pin of the IC more toward the ground, forcing the output voltage to decrease which also decreases the light illumination, maintaining a constant glow on the lamp.

Current Controlled Power Supply Circuit:

The next circuit shows a super simple wiring with the IC LM338 whose ADJ pin is connected to the output after a current sensing preset. The value of the preset determines the maximum amount of current that becomes permissible through the IC at the output.

12V Current Controlled Battery Charger Circuit

The circuit below can be used to charge a 12 volt lead acid battery safely. The resistor Rs may be selected appropriately for determining the desired level of current for the connected battery. R2 can be adjusted for obtaining other voltages for charging other categories of batteris.

Slow Turn ON Output Power Supply

Some sensitive electronic circuits require a slow start rather than the usual instant start. The inclusion of C1 makes it sure that the output from the circuit rises gradually to the set maximum level ensuring the intended safety to the connected circuit.

Heater Controller Circuit

IC LM338 can also be configured for controlling temperature of a certain parameter like a heater. Another important IC LM334 is used as the sensor which is connected across the ADJ and ground of the IC LM338. If the heat from the source tends to increase above the predetermined threshold, the sensor lowers its resistance correspondingly, forcing the output voltage of LM338 to fall, subsequently decreasing the voltage to the heater element.

10 Amp Regulated Power Supply Circuit

The following circuit shows another circuit whose current is restricted to 10 amps, that means the output can be made suitable for high current rated loads, the voltage is adjustable as usual via the pot R2.

Adjusting Many LM338 modules via a Single Control

The given circuit shows a simple configuration which can be used for controlling the outputs of many LM338 power supply modules simultaneously though a single pot.

In the above section we learned a few of the important application circuits using the IC LM338, which were basically collected from the datasheet of the IC, if you have more clues regarding such LM338 based circuits, please let us know through the comments below.

You'll also like:

  • 1.  BJT 2N2222, 2N2222A Datasheet and Application Notes
  • 2.  Types of Inductors Explored
  • 3.  Point Contact Diodes [History, Construction, Application Circuit]
  • 4.  LM35 Pinout, Datasheet, Application Circuit
  • 5.  High Voltage, High Current Transistor TIP150/TIP151/TIP152 Datasheet
  • 6.  18650 2600mAh Battery Datasheet and Working

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
86 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz