Home » Electronic Sensors » 4 Best Touch Sensor Switch Circuits Explored
4 Best Touch Sensor Switch Circuits Explored

4 Best Touch Sensor Switch Circuits Explored

The post details 4 methods of building touch sensor switch circuits at home, which can be used for 20V appliances with mere finger touch operations. The first one is a simple touch sensor switch using a single IC 4017, the second one employs a Schmidt trigger IC, the 3rd one work with a flip flop based design and there's another one which uses the IC M668. Let's learn the procedures in detail

Using a 4017 IC for the Relay Touch Activation

Referring to the below given circuit diagram for the proposed simple touch activated relay circuit, we can see that the entire design is built around the IC 4017 which is a 10 step johnson's decade counter divider chip.

Simple Touch Sensor Switch Circuit using a Single IC 4017

The IC basically consists of 10 outputs, starting from its pin#3 and randomly ending at pin#11, constituting 10 outputs which are designed to produce a sequencing or shifting high logics across these output pins in response to every single positive pulse applied at its pin#14.

The sequencing does not need to finish at the last pin#11, rather could be assigned to stop at any desired intermediate pinout, and revert to the first pin#3 to initiate the cycle afresh.



This is simply done by connecting the end sequence pinout with the reset pin#15 of the IC. This makes sure that whenever the sequence reaches this pinout, the cycle stops here and reverts to pin#3 which is the initial pinout for enabling a repeat cycling of the sequence in the same order.

For example in our design pin#4 which is the third pinout in the sequence can be seen attached to pin#15 of the IC, implies that as the sequence jumps from pin#3 to the next pin#2, and then to pin#4 it instantly reverts or flips back to pin#3 to enable the cycle again.

How it Works

This cycling is induced by touching the indicated touch plate which causes a positive pulse to appear at pin#14 of the IC each time it's touched.

Let's assume at power switch ON the high logic is at pin#3, this pin is not connected anywhere and is unused, while pin#2 can be seen connected with the relay driver stage, therefore at this moment the relay stays switched OFF.

As soon as the touch plate is tapped, the positive pulse at pin#14 of the IC toggles the output sequence which now jumps from pin#3 to pin#2 enabling the relay to switch ON.

The position is held fixed at this point, with the relay in the switched ON position and the connected load activated.

However as soon as the touch plate is touched again, the sequence is forced to jump from pin#2 to pin#4, which in turn prompts the IC to revert the logic back to pin#3, shutting of the relay and the load and enabling the IC back to its standby condition.

Modified Design

The above touch operated flip flop bistable circuit might show some oscillation in response to finger contact, leading to relay chattering. To eliminate this issue, the circuit should be modified as given in the following diagram.

touch sensitive relay switch circuit

Or you may also follow the diagram which is shown in the video.

2) Touch Sensitive Switch Circuit Using IC 4093

This second design is another accurate touch sensitive switch can be built using a single IC 4093 and a few other passive components. The shown circuit is extremely accurate and fail-proof.

The circuit is basically a flip-flop that may be triggered through manual finger touches.

Using Schmitt Trigger

The IC 4093 is a Quad 2-input NAND Gate with Schmidt trigger. Here we employ all the four gates from the IC for the proposed purpose.

touch switch using Schmitt Trigger IC 4093

How the Circuit works

Looking at the figure the circuit may be understood with the following points:

All the gates from the IC are basically configured as inverters and any input logic is transformed into an opposite signal logic at the respective outputs.

The first two gates N1 and N2 are arranged in the form of a latch, the resistor R1 looping from the output of N2 to the input of N1 becomes responsible for the desired latching action.

Transistor T1 is Darlington high gain transistor which has been incorporated for amplifying the minute signals from the finger touches.

Initially when power is switched ON due to the capacitor C1 at the input of N1, the logic at the input of N1 is pulled to ground potential making N1 and N2 feedback system latch with this input producing a negative logic at the output of N2.

The output relay driver stage is thus rendered inactive during initial power switch ON. Now suppose a finger touch is made at the base of T1, the transistor instantly conducts, driving a high logic at the input of N1 via C2, D2.

C2 charges instantly and blocks any further faulty triggers from the touch, making sure the de-bouncing effect does not disturb the operation.

The above logic high instantly flips the condition of N1/N2 which now latches to produce a positive at the output, triggering the relay drive stage and the corresponding load.

So far the operation looks pretty straightforward, however now the next finger touch should make the circuit collapse and return to its original position and for implementing this feature, N4 is employed and its role becomes truly interesting.

After the above triggering is done, C3 gradually gets charged (within seconds), bringing a logic low at the corresponding input of N3, also the other input of N3 is already held at logic low through the resistor R2, which is clamped to ground. N3 now becomes stationed in a perfect stand by position “waiting” for the next touch trigger at the input.

Now suppose the next subsequent finger touch is made at the input of T1, another positive trigger is released at the input of N1 via C2, however it does not produce any influence over N1 and N2 as they are already latched in response with the earlier input positive trigger.

Now, the second input of N3 which is also connected to receive the input trigger via C2 instantly gets a positive pulse at the connected input.

At this instant both the inputs of N3 goes high. This generates a logic low level at the output of N3. This logic low immediately pulls the input of N1 to ground via the diode D2, breaking the latch position of N1 and N2. This causes the output of N2 to become low, switching OFF the relay driver and the corresponding load. We are back into the original condition and circuit now waits for the next subsequent touch trigger in order to repeat the cycle.

Parts List

Parts required for making a simple touch sensitive switch circuit.

R1, R2 = 100K,

R6 = 1K

R3, R5 = 2M2,

R4 = 10K,

C1 = 100uF/25V

C2, C3 = 0.22uF

D1, D2, D3 = 1N4148,

N1---N4 = IC 4093,

T1 = 8050,

T2 = BC547

Relay = 12 volts, SPDT

3) 220V Electronic Touch Switch Circuit

It may be now possible to convert your existing mains 220V light switch circuit with the electronic touch switch circuit explained in this post. This third idea is built around the chip M668 and it employs just a handful of other components for implementing the proposed  mains touch switch ON/OFF application.

How this simple mains electronic touch switch circuit works

The indicated 4 diodes form the basic bridge diode network, the thyristor is used for switching the mains 220V AC for the load, while the IC M668 is used for processing the ON/OFF latching actions whenever the touch switch is touched.

The bridge network rectifies the AC into DC through R1 which limits the AC current to safe level for the circuit, and VD5 regulates the DC suitably. The final outcome is a rectified, stabilized 6V DC which is applied to the touch circuit for the operations.

The touch plate is connected with a current limiting network using R7/R8 so that no shock sensation is felt by the user while putting finger on this touch pad.

The various pinout functions of the IC can be learned from the following points:

The supply positive is applied to pin#8 and ground to pin#1 (negative) The touch signal on the touch pad is sent to pin#2, and the logic is transformed into an ON or OFF at the output pin#7.

This signal from pin#7 subsequently drives the SCR and the connected load into either ON or OFF states.

C3 makes sure that the SCR is not false triggered due to multiple pulses in response to an improper or inadequate touching on the touch pad. R4 and C2 forms an oscillator stage for enabling the required processing of the signals within the IC.

A synchronization signal from R2/R5 is divided internal through pin#5 of the IC. Pin#4 of the IC has a very crucial and interesting function. When connected with the positive line or Vcc, the IC enables the output to alternately toggle ON/OFF, allowing the light or the load to switch ON and OFF alternately in response to every touch on the touch pad.

However when pin#4 is connected to the ground or the negative line Vss, it transforms the IC into a 4 stage dimmer circuit.

Meaning in this position every touch on the touch pad causes the load ( a lamp for example) to reduce or increase its intensity sequentially, in a gradually dimming or gradually brightening manner ( and OFF at the ends). If you have any questions regarding the functioning of the above discussed mains touch switch circuit please write them down through the comment box...

4) Touch Activated Lamp Circuit with Delay Timer

The fourth design is a transformerless touch activated 220V delay lamp switch circuit enables the user to momentarily switch ON a table lamp or any other desired bed lamp during night time.

How the circuit Works.

Single IC Touch Activated Lamp Circuit with Delay Timer


Referring to the circuit above, the four diodes at the input form the basic bridge rectifier circuit for rectifying the mains AC into DC. This rectified DC is stabilized by the 12V zener and filtered by C2 to acquire a fairly clean DC for the accompanying touch switch circuit.

R5 is used for limiting the input mains current to a much lower level suitable for operating the circuit safely.

An LED can be seen connected with this supply which ensures a dim light is always ON near the circuit for facilitating quick location of the touch switch pad.

The IC used in this transformers touch lamp with delay circuit is a double D flip-flip IC 4013, which has 2 flip flop stages built inside it, here we make use of one of these stages for our application.

Whenever the indicated touch pad is touched by finger, our body offers a leakage current on the point causing a momentary high logic on pin#3 of the IC, which in turn causes the pin#1 of the IC to go high.
When this happen the attached triac is triggered via R4, and the bridge rectifier completes its cycle powering the series lamp. The lamp now illuminates brightly.

Also in the meantime, the capacitor C1 gradually starts charging via R3, and when it gets fully charged pin#4 is rendered with a high logic which resets the flip flop in its original condition. This instantly turns pin#1 low switching OFF the SCR and the lamp.

The value of the R3/C1 produces a delay of about 1 minute, this can be increased or decreased by suitably increasing or decreasing the values of these two RC components as per individual preference.

SHARING IS CARING!


About the Author

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials. If you have any circuit related query, you may interact through comments, I'll be most happy to help!



31 thoughts on “4 Best Touch Sensor Switch Circuits Explored”


  1. Howdy, Friend! Interested to Learn Circuit Designing? Let's Start Discussing below!
  2. Sir i tried it using 1000mf cap with 1m resistor and also diode. but now it works only if switch is in off state. suppose before power goes if switch is off and power comes it remains off but if switch is ON and power goes and when power comes back it is off. Sir is there any other way to keep same state of switch even if main power goes and come it remains in previous state.
    circuit description for two touch switch.
    Ic used cd 4013. Two output taken from this Ic 1st output from pin 1 and 2nd from pin 13.Input given through M397 TTP223 Capacitive Touch Switch Button Self-Lock Moduleto both input pins 3 & 11 with 2k resistor to I/O of touch module other end of resistor goes to pin 3 of ic 4013 and one more resistor of 100k from pin 3 goes to ground. . short pins of Ic 2 with 5, 4 with 6&7, 12 with 9 and 10 with 8 which is then shorted to 7 as ground & 14 is vcc.
    output of this Ic given to ULN2004 ic and output through this ic is given to relay circuit. Input supply is 5v
    sir pls let me know if any other modification to be done so that switch remain in same previous state even if power goes and come.

  3. Sir I made a touch switch using 4013 ic and its works fine but suppose if switch is OFF and main power goes and when power comes back again switch turns ON (vice versa). How can I avoid this. or how to keep the same state of switch when power goes OFF or comes ON.

    • Janak, to rectify the issue you can connect a high value capacitor across the ICs suply terminals via a 1M resistor, and also make sure to connect a 1N4148 from the supply to the (+) of the capacitor, that is at the junction of 1M and capacitor positive, cathode will go at this point, and the anode to the supply positive.

  4. Dear sir,

    Can this circuit may be used for fence for detecting intruder. If nor what changes needed in above circuit.

    Abbas

    • Dear Abbas, no it cannot be used for fence, since the fence could act like an antenna and cause stray pick ups and spurious relay operations

  5. what is that touch plate..is it an ordinary metallic plate to which base of transister is connected..sir im new to these type of circuits thats why i asked

    • it can be any metal end, even a small 1 inch stripped wire will do.

      this wire should be as small as possible, longer wires might produce erratic results due to stray disturbance pick up

  6. Sir good morning Hope you fine. I requested u to design a circuit for boost the heart beat sound from stethoscope via condensor mic to 8" speaker.Is there any chance to design.
    Thank you
    Sridhar

  7. sir
    is there any progress in my request
    can you tell me how to buy parts for making these projects online individually..i dont want bulk quantity.can you tell me any site..this ia because nowadays all parts are not available in my nearby electronic shops..please help me

  8. Does the touch plate work when it is placed under a glass panel? LIke if we touch the particular area on the glass which is placed above the touch plate, the relay should response.

Leave a Comment

Do NOT follow this link or you will be banned from the site!