• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Grid and 3-Phase / 50V 3-Phase BLDC Motor Driver
warning message: electricity is dangerous, proceed with caution
50V BLDC motor controller using L6235 IC module

50V 3-Phase BLDC Motor Driver

Last Updated on March 3, 2021 by Swagatam 71 Comments

This yet another versatile 3-phase driver device in the form of IC L6235  from ST Microelectronics allows you to drive a 50V 3-phase BLDC motor with extreme efficiency.The chip also includes all the required protection features built-in, along with an easy to configure external speed control stage.

Table of Contents
  • How the IC L6235 BLDC Driver Works
  • 50V BLDC Driver Circuit Diagram
  • Pinout Details
  • Parts List for the above discussed 50V 3-phase BLDC motor driver circuit

How the IC L6235 BLDC Driver Works

The IC L6235 is an embedded DMOS 3-phase motor driver with an integrated over-current protection. Designed with BCD technology, the device embeds the benefits of isolated DMOS power transistors with CMOS, and with bipolar circuits within the same device.

Chip Internal Structure

The chips integrates all the circuitry required for effectively driving a 3-phase BLDC motor, as I have explained below:

A 3-phase DMOS bridge, a constant off-time PWM current controller and the decoding logic for single ended hall sensors for generating the essential 120 degree phase shift sequence for the power stage.

With regard to the built-in protections the L6235 device offers a non-dissipative over current protection on the high-side power MOSFETs, protection against ESD, and an automatic thermal shutdown in case the device heats up above the rated value.

50V BLDC Driver Circuit Diagram

A typical L6235 50V 3-phase BLDC motor driver circuit application can be witnessed above, which looks quite straightforward with its implementation procedures.

You just have to hook up the shown elements in place and use the design to operate any BLDC motor with sensors rated within 8V to 50V at 3 amps rate.

Pinout Details

The pinout function for the specified circuit can be studied from the following data:

Pin#6, 7, 18, 19 = (GND) These are the Ground terminals of the IC.

Pin#8 = (TACHO) It's designated as the open drain output Frequency-to-voltage open drain output. here each single pulse from pin H1 is dimensioned in the form of a fixed and adjustable length pulse.

Pin#9 = (RCPULSE) Is configured like a parallel RC network attached between this pin and the ground, which fixes the period of the monostable pulse responsible for the frequency-to-voltage converter.

Pin#10 = (SENSEB) This pin must be connected together with pin SENSEA to power ground through a sensing power resistor. Here the inverting input of the sense comparator also needs to be connected.

Pin#11 = (FWD/REV) This pinout can be used for changing the rotational direction of the BLDC motor. A HIGH logic level on this pinout will cause a forward motion while, a LOW logic level will allow the BLDc motor to rotate in the opposite reverse direction. For enabling a fixed clockwise or anticlockwise directions, this pinout may be appropriately terminated to a +5V or the ground line..

Pin#12 = (EN) A LOW logic signal will shut OFF all the internal power MOSFETs and stall the BLDC motor. In case this pinout is intended to be not used, it must be terminated to the +5 V supply rail.

Pin#13 = (VREF). You can see an opamp configured with this pinout. The Vref input of the opamp connected with this pinout can be fed with a linearly adjustable 0 to 7V for changing the speed of the BLDC motor from 0 to max. If not used make sure to connect this pinout to GND.

Pin#14 = (BRAKE) A LOW logic level on this pinout will switch ON all highside Power MOSFETs, instantly enforcing the brake/stop function. In case not used, this pinout can be held connected to +5 V.

Pin#15 = (VBOOT) It is simply the input pinout for the bootstrap voltage needed for driving the upper Power MOSFETs. Just connect the parts as indicated

Pin#5, 21, 16 = (3-phase OUT to BLDC motor) Power output which connects with the BLDC motor and powers the motor.

Pin#17 = (VSB) Just connect it as shown in the diagram. Pin#20 = (VSA) Same as above, needs to eb connected as given in the diagram.

Pin#22 = (VCP) It is the output from the internal charge pump oscillator, connect the parts as shown in the diagram.

Pin#1, 23, 24 = 3-Phase sequential signal from the BLDC single ended Hall sensor can be configured with these pinouts, if the BLDC is a sensorless, you can feed an external 3-phase 120 degree apar input on these pinout at +5V level.

Parts List for the above discussed 50V 3-phase BLDC motor driver circuit

  • C1 = 100 µF
  • C2 = 100 nF
  • C3 = 220 nF
  • CBOOT = 220 nF
  • COFF = 1 nF
  • CPUL = 10 nF
  • CREF1 = 33 nF
  • CREF2 = 100 nF
  • CEN = 5.6 nF
  • CP = 10 nF
  • D1 = 1N4148
  • D2 = 1N4148
  • R1 = 5.6 K
  • R2 = 1.8 K
  • R3 = 4.7 K
  • R4 = 1 M
  • RDD = 1 K
  • REN = 100 K
  • RP = 100
  • RSENSE = 0.3
  • ROFF = 33 K
  • RPUL 47 K
  • RH1, RH2, RH3 = 10 K

For more details you can refer to the following datasheet from ST

You'll also like:

  • 1.  Universal ESC Circuit for BLDC and Alternator motors
  • 2.  Bluetooth Motor Controller Circuit
  • 3.  Water/Coffee Dispenser Motor Circuit
  • 4.  How to Convert 3 phase AC to Single phase AC
  • 5.  Very Simple BLDC Motor Driver Circuits using Back EMF
  • 6.  AC Motor Speed Controller Circuits using Back EMF

Filed Under: Grid and 3-Phase, Motor Controller Tagged With: 50V, BLDC, Driver, Motor, Phase

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « 120 Watt Amplifier Circuit using TDA 2030 IC
Next Post: BLDC Ceiling Fan Circuit for Power Saving »
Subscribe
Notify of
guest
guest
71 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (84)
  • Datasheets and Components (105)
  • Electronics Theory (140)
  • Free Energy (38)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (89)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • SMPS and Converters (31)
  • Solar Controller Circuits (60)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Simple Buck Converter Circuits using Transistors
    • David on Simple Buck Converter Circuits using Transistors
    • Swagatam on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Mark on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Swagatam on Boost Converter Calculator

    © 2025 · Swagatam Innovations