• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • Circuits for Beginners
  • Basic Circuits
  • Hobby Projects
  • Transistor Circuits

New-Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright

Home » Industrial Electronics » Single Phase Preventor Circuit

Single Phase Preventor Circuit

Last Updated on June 15, 2019 by Swagatam 6 Comments

In this post we learn a couple simple circuits which when installed will prevent single phase occurrence in a 3 phase system.

Introduction

We all know that for operating heavy electrical loads three phase power or AC is required in order to make the functioning efficient and viable.

However this necessitates the presence of all the three phases at all circumstances. If any of the phases fail, can cause catastrophic consequences to the connected systems. The following artice offers a simple yet effective solution for tacking the above conditions.

As discussed above, a three phase load such as an industrial heavy motor will require the presence of all the three input AC mains phases for reliable and correct operations.

If there's any discrepancy with the presence of the input phases, the motor might start operating under heavily stressful and abnormal conditions.

This might cause huge current consumption, heating of the winding and ultimately burning of the motor parts.

Circuit Operation

The circuit of a single phasing preventor shown below can be effectively used for eliminating all kinds of undesirable consequences that might result from an abnormal three phase issues.

In the diagram we can see the use of three transformer/relay driver stages.

The transformers can be the normal step-down types, rated appropriately for switching the connected relays.

One of the input primary terminals of all the transformers are made common and connected with the neutral line.

While the other terminals of each transformer are joined to the respective first, second and the third phases of the input mains.

However the above connections are done cleverly via the relay N/O contacts of the subsequent relay assemblies for implementing the required single phasing prevention.

Initially when the set-up is integrated with the the three phases as per the given connections, the phases are remain cut off from the output load, because the relay contacts are all open.

On pressing the given push button, the particular phase in the line is allowed to reach the second or the middle transformer primary winding.

The middle transformer instantly operates its own relay, whose contacts just like the above relay connects the second respective phase with the primary of the bottom transformer, which finally operates its relay powering the top transformer.

Once this happens the entire system gets latched via the N/O contacts of the relays such that now even if the push button is released the system continues and sustains the voltages across the outputs and to the transformers.

Now suppose if any of the phases become low or fails, the particular transformer in line instantly deactivates its relay and the whole system of relays break down in sequence, immediately halting and disconnecting the output loads.

Thus the system effectively prevents the loads from operating under the absence of any of the phases making it sure nothing goes out in fumes.

The circuit was designed exclusively by me, I guess so, if it's already been discovered kindly provide me with the link:

You'll also like:

  • 1.  OBD2 Connector Pinout, Datasheet
  • 2.  100 °C to 1000 °C Thermocouple Temperature Meter Circuit
  • 3.  Grid Transformer Fire Hazard Protector Circuit
  • 4.  Simple Line Follower Robot Circuit using LM324
  • 5.  Infrared (IR) Motor Remote Control Circuit
  • 6.  Automatic Generator Choke Actuator Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Subscribe2


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Thilina kumara says

    dear Sir, i have know from someone, we can make communication using 230v power ac current line` can you give me an intercom circuit to talk with my friend using current line, there is about 5 km between our houses, plz

    Reply
    • Swagatam says

      Dear Thilana, 5km distance looks too large, I don't think that may easily feasible….room to room communication may be possible though,

      I have posted one similar circuit here, which you can read for more info:

      https://www.homemade-circuits.com/2016/02/appliance-remote-control-through-power.html

      Reply
  2. Unknown says

    Hi….. I have one doubt please tell answer. I have one single phase preventer, is it act as a over voltage protection…… If we give 485v to input, it will ON or not….please say answer for it anyone….

    Reply
    • Swagatam says

      Hi, no it will not protect from high voltages…it will switch ON at 485v if all 3 phases are present

      Reply
  3. olupot says

    hello sir thanks alot i was successful i finally completed my inverter and it works best.
    i have a question regarding this system yes the tranfo used are stepdown but i want to use a 0-240v primary and 0-12v secondary for powering the relay am i correct there thanks

    Reply
    • Swagatam says

      That’s great Olupot, congrats on that!

      I don’t think the above explained circuit is the best way to control single phasing, instead you can try the opamp based circuit as shown in the following link:

      /blog/single-phase-preventer-circuit/

      Reply

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (53)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Amplifiers (58)
  • Arduino Engineering Projects (82)
  • Audio Projects (94)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • DIY LED Projects (89)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (109)
  • Fish Aquarium (5)
  • Free Energy (35)
  • Fun Projects (11)
  • GSM Projects (9)
  • Health Related (18)
  • Heater Controllers (28)
  • Home Electrical Circuits (101)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (62)
  • Mini Projects (172)
  • Motor Controller (66)
  • MPPT (7)
  • Oscillator Circuits (24)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (74)
  • Radio Circuits (9)
  • Remote Control (47)
  • Security and Alarm (61)
  • Sensors and Detectors (116)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (54)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (14)
  • Water Level Controller (45)

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

© 2022 · Swagatam Innovations

We use cookies on our website to give you the best experience.
Cookie settingsAccept All
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Please visit the Privacy Policy Page for more info.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT