• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Power Supply Circuits / 0 to 50V, 0 to 10amp Variable Dual Power Supply Circuit

0 to 50V, 0 to 10amp Variable Dual Power Supply Circuit

Last Updated on October 2, 2022 by Swagatam 220 Comments

caution electricity can be dangerous

The post explains a simple yet very useful 0 to 50V dual power supply circuit which will enable a full 0 to maximum dual voltage +/- control of the input power supply DC. It also includes a wide range current control feature right from 0 to 10 amps. The idea was requested by Mr. Tamam.

Technical Specifications

It was my long term dream to build a 2 channel power supply for personal use, I have seen a lot of circuits, but those does not fit my criteria.
However, please take a look at the following requirements and let me know if its possible or not, if possible I will be the happiest person in the world.

1. Output voltage range: -50V to 0V to +50V ( must be adjustable by individual channel )

2. Output Current range: 0A to 10A  ( must be adjustable by individual channel )

3. Output would be Duel channel, means total 6 outputs,

Channel 1 (Positive, GND, Negative)     Channel 2 (Positive, GND, Negative)

4. Power Supply Unit should contains 2 Voltmeters and 2 Ammeters (Analogue) for 2 individual channel.

5. Power Supply Unit must have short circuit protection and cooling fan featured and extreme heat protection.

6. I don't want to use any PIC or AVR, so please avoid those.

Money is not a matter here, I will spend continuously until above requirement meets.
Even If I need any custom transformer I will order and make it from our local area.
I have seen many ready made power supply in market but I want to make it by own hand. You just show me the way... please bro, I will be pleased to you for lifetime.

Thank you very much !!

Best Regards,

Tamam


For calculating the part values accurately, you can refer to this bench power supply article


 Circuit Diagram

The Design

The basic design of the proposed 0 to 50V variable dual power supply circuit with 0 to 10 amp variable current facility is shown in the above figure.

The entire design is transistor (BJT) based and is virtually indestructible. Moreover it's equipped with an over load and over current protection features.

The two section included in the design are exactly similar with  their configurations, the only difference being the use of PNP devices in the lower configuration while NPN in the upper configuration.

The upper NPN design is configured to produce a variable response right from 0.6V to 50V positive while the lower PNP section becomes responsible of producing an oppositely identical response from -0.6V to -50V output.

The Transformer Specs

The maximum limit could be suitably changed simply by changing the voltage rating of the transformer. However for higher voltages you may have to appropriately upgrade the BJT voltage ratings accordingly.

In both the designs, P2 executes the function of varying the voltage levels as desired by the user, while P1 functions as the current regulator and is used for adjusting or setting the output anywhere from 0 to 10 amp current. Here too the maximum rating depends on the selection of the transformer amp rating and may be changed as per individual preferences.

T1s in the both the sections become the fundamental part or the heart of the entire voltage control functioning in the circuit, which becomes possible due to the popular common collector configuration of the devices.

The other two active BJTs only help to implement the same just by controlling the base power of the T1s thus making it possible to adjust the thresholds to any desired user defined voltage and current levels, as per the ratings of the transformer or the input supply.


You may also like this LM317 based Dual Power Supply Circuit


Parts list

  • R1 = 1K, 5 watt wire wound
  • R2 = 120 Ohms,
  • R3 = 330 Ohms,
  • R4 = to be calculated using Ohms law, R = 0.6/Maximum Current Limit, Wattage = 0.6 x Maximum Current Limit
  • R5 = 1K5,
  • R6 = 5K6,
  • R7 = 56 Ohms,
  • R8 = 2K2,
  • P1,P2 = 2k5 presets
  • T1 = 2N6284 + BD139(NPN), 2N6286 + BD140(PNP)
  • T2, T3 = BC546 (NPN) BC556B (PNP)
  • D1, D2, D3, D4 = 6A4,
  • D5 = 1N4007,C1, C2 = 10000uF/100V,
  • Tr1 = 0 – 40 Volts, 10 Amp

Here's another accurate adjustable dual power supply circuit, for your reference:

If you have any questions regarding this above power supply, please comment below and ask your questions, I will try to respond ASAP

You'll also like:

  • 1.  Low-Dropout 5V, 12V Regulator Circuits using Transistors
  • 2.  Simple Voltage, Current Regulator Circuits Explored
  • 3.  12V LED Backpack Power Supply Circuit
  • 4.  Designing Simple Power Supply Circuits
  • 5.  How to Calculate Transformerless Power Supplies
  • 6.  Surge Protected Cheap Transformerless Hi-Watt LED Driver Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
220 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz