• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • +1000 Circuits
  • Hobby Circuits
  • Basic Circuits
  • Learn Arduino
  • Logic IC Pinouts
  • Disclaimer
You are here: Home / 4017 IC Circuits / Stepped Voltage Generator Circuit

Stepped Voltage Generator Circuit

Last Updated on September 13, 2020 by Swagatam Leave a Comment

A stepped voltage generator is an electronic circuit designed to generate a sequentially stepped voltage waveform, which resembles a sinusoidal appearance, but has a stepped voltage pattern ascending sequentially upwards towards the peak and then descending sequentially downward with identical steps towards the 0V line to complete a cycle of the waveform.

How the Circuit Works

The figure below exhibits a useful application of the IC 4066 quad bilateral switch. In this circuit, the 4066 (U1) is configured to carry out sequential switching, in order to generate a uniform stepped waveform; as indicated in the next figure. As demonstrated, the generator's waveform consists of 3-up and 3- down steps through 1V increments.

The triggering for the 4066 internal switches is governed by a 4017 decade counter/divider (U2); a 567 tone decoder set up like a squarewave generator provides the required clock pulses for the IC 4017.

The 4017 is rigged to count from 0 to 5 (0-1-2-3-4-5) sequentially and reset on the rising edge of the seventh step by coupling pin 5 (output 6) of U2 to pin 15 (reset).

As soon as output 6 (pin 5 of U2) becomes high, the reset terminal of U2 pushes output 0 (pin 3) to flip from low to high, starting the pattern afresh.

The high pin-3 output (output 0) of U2 is given to the control pin of the 1st U1 switch, switching it on and consequently connecting the intersection of R4 and R5 with the output bus.

This sets up step one with a one-volt level. With the following clock pulse from the 567, the 4017 generates a high output at pin 2, which is applied via D4 to another switch control at pin 5, switching it on.

This links the R3, R4 with the output bus. The 2nd step constitutes a 2-volt output. For the subsequent pulse obtained via U3, pin 4 of U2 turns high, evoking the 3rd switch (in U1) to activate, which respond to generate a 3- volt output intended for step 3.

The 4th pulse coming from U3 results in pin 7 to become high, switching on the very last switch, and thus creating a 4-volt output for step 4.

The fifth pulse feeds a high to pin 10 of U2, which moves by means of D4 to the control input of the 3rd switch, switching it on (for a second occasion) and providing a 3-volt output to the 5th step.

For the subsequent clock pulses, the switch attached to pin 6 of U1 is yet again activated, generating a 2-volt output for step 6. Soon after step six is accomplished, the counter resets and commences back from the start by switching on the 1st switch for step 1.

Each waveform step can be arranged for any voltage right from zero to 100 % supply voltage through the use of specific voltage dividers for each step. Additionally, the generator's output could be buffered to deliver adequate voltage and current outputs to provide rising voltage or current supply for a semiconductor curve tracer.

Another Simple Stepped Voltage Generator Circuit

The next design below is even simpler to build as it employs just a couple ICs for the required stepped waveform creation.

However, the design is implemented in a manual mode, wherein the sequential steps of the waveform are developed by tapping the push button S1 at a specific timed rate. Each pressing causes the output of the IC 4017 to shift from pin3 upwards, towards pin11.

In the process, the common ends of the resistors happen to develop a sequentially ascending and descending stepped voltage due to the effect of the varying potential divider formed by the interaction of the shifting IC 4017 logics across the resistors R2---R10 and the ground resistor R13.

Since the common joined ends of the resistors are together fed to the base of a common-emitter BJT stage, the stepped voltage is replicated at the emitter of the 2N2222 transistor with a higher current level, which can be integrated with any suitable external circuit stage for a desired execution.

The manually controlled switch can be replaced with an automatic oscillator stage as indicated in the following example, which shows the implementation of the above stepped voltage generator in a police lamp effect simulator circuit.

Applications

You will find a variety of applications for this circuit. The stepping waveform generator could be implemented to produce numerous progressive voltages for examining the on/off switching point of many CMOS units. It can be effectively used for making efficient sine wave inverters and converters.

SHARING IS CARING!



Previous: Loop-Alarm Circuits – Closed-Loop, Parallel-Loop, Series/Parallel-Loop
Next: Touch Volume Control Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  4 Simple Clap Switch Circuits [Tested]
  • 2.  Solar Insect Repellent Circuit for Protecting Crops in fields
  • 3.  Digital Christmas Candle Light Circuit
  • 4.  PIR Triggered Message Player Circuit
  • 5.  Clap Operated Toy Car Circuit
  • 6.  Adjustabe CDI Spark Advance/Retard Circuit

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (94)
  • 741 IC Circuits (18)
  • Amplifiers (49)
  • Arduino Engineering Projects (82)
  • Audio Projects (85)
  • Battery Chargers (76)
  • Car and Motorcycle (88)
  • Datasheets (45)
  • Decorative Lighting (Diwali, Christmas) (32)
  • DIY LED Projects (82)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (17)
  • Heater Controllers (24)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (27)
  • Infrared (IR) (39)
  • Inverter Circuits (94)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (55)
  • Mini Projects (153)
  • Motor Controller (65)
  • MPPT (7)
  • Oscillator Circuits (15)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (65)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (56)
  • Sensors and Detectors (116)
  • SG3525 IC (5)
  • Simple Circuits (72)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (39)
  • Ultrasonic Projects (12)
  • Water Level Controller (46)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results

© 2021 · Swagatam Innovations