• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Timer and Delay Relay / Single Mosfet Timer Circuit
warning message: electricity is dangerous, proceed with caution
mosfetasdelaytimercircuit

Single Mosfet Timer Circuit

Last Updated on April 3, 2021 by Swagatam 73 Comments

The following article discusses the use of a mosfet as a switch for toggling high current loads efficiently. The circuit can be also transformed into a delay OFF circuit with simple modifications. The design was requested by Mr.Roderel Masibay.

Table of Contents
  • Comparing Mosfet with BJT
  • Why Mosfet is Better BJT
  • Using Mosfet as a Switch
  • Using Mosfet as a Delay Timer
  • Calculating the Delay
  • Making a Long Duration Timer
  • MOSFET and SCR Timer Circuit
  • How it Works

Comparing Mosfet with BJT

A field effect transistor or mosfet can be compared with a bjt or the ordinary transistors, except one significant difference.

A mosfet is a voltage dependent device unlike BJTs which are current dependent devices, meaning a mosfet would switch ON fully in response to a voltage above 5V at virtually zero current across its gate and source, whereas an ordinary transistor would ask for relatively higher current for switching ON.

Moreover this current requirement grows higher proportionately as the connected load current increases across its collector. Mosfets on the other hand would switch any specified load irrespective of gate current level which may be maintained at the lowest possible levels.

Why Mosfet is Better BJT

Another good thing about mosfet switching is they conduct fully offering very low resistance across the current path to the load.

Additionally a mosfet wouldn't require a resistor for gate triggering and may be switched directly with the available supply voltage provided it's not far too beyond the 12V mark

All these properties associated with mosfets makes it a clear winner when compared to BJTs, especially when it's used like a switch for operating powerful loads such as high current incandescent lamps, halogen lamps, motors, solenoids etc.

As requested here we'll see how a mosfet may be used as a switch for toggling a car wiper system. A car wiper motor consumes considerable amount of current and is usually switched through a buffer stage such as  relays, SSRs etc. However relays can be prone to wear and tear while SSRs can be too costly.

Using Mosfet as a Switch

A simpler option can be in the form of a mosfet switch, I have explained the circuit details of the same.

As shown in the given circuit  diagram the mosfet forms the main controlling device with practically no complications around it.

A switch at its gate which can be used for switching ON the mosfet and a resistor for keeping the mosfet gate to a negative logic when the switch is in the OFF position.

Pressing the switch provides the mosfet with the required gate voltage relative to its source which is at zero potential.

The trigger instantly switches ON the mosfet so that the load connected at its drain arm becomes fully ON and operative.

With a wiper device attached to this point would make it wipe for so long the switched remains depressed.

A wiper system sometimes requires a delay feature for enabling a few minutes of wiping action before stopping.

With a small modification, the above circuit can be simply turned into a delay OFF circuit.

Using Mosfet as a Delay Timer

As shown in the diagram below, a capacitor is added just after the switch and across the 1M resistor.

When the switch is momentarily turned ON, the load switches ON and also the capacitor charges up and stores the charge in it.

Video Demonstration

When the switch is toggled OFF, the load continues to receive the power since the stored voltage in the capacitor sustains the gate voltage and keeps it switched ON.

However the capacitor gradually discharges via the 1M resistor and when the voltage drop below 3V, the mosfet is no longer able to hold, and the complete system switches OFF.

The delay period depends on the value of the capacitor and the resistor values, increasing any one of them or both increases the delay period proportionately.

Calculating the Delay

To calculate the delay produced by the RC constant we can use the following formula:

V = V0 x e(-t/RC)

  • V  is threshold Voltage at which the mosfet is supposed to just switch OFF or just begin turning ON.
  • V0  is the supply voltage or the Vcc
  • R is the discharge resistance (Ω) which is connected parallel to the capacitor.
  • C (Capacitor Value (F) in the exemple 100uF)
  • t (time of discharging that we want to calculate (s) )

we want to know the delay (t) =  e(-t/RC) = V/V0

 -t/RC = Ln(V/V0)

t = -Ln(V/V0) x R x C

Example Solution

If we select the threshold capacitance turn ON/OFF value of the mosfet as 2.1V, and supply voltage as 12V, resistance as 100K, and capacitor as 100uF the delay after which the mosfet will turn OFF could be approximately calculated by solving the equation as given below:

t = -Ln (2.1/12) x 100000 x 0.0001

t = 17.42 s

Thus from the results we find that the delay will be around 17 seconds

Making a Long Duration Timer

A relatively long duration timer may be designed using the above explained mosfet concept for switching heavier loads.

The following diagram depicts the procedures of implementing it.

The inclusion of a extra PNP transistor and a few other passive components enables the circuit to produce higher duration of delay period. The timings may be suitably adjusted by varying the capacitor and resistor connected across the base of the transistor.

MOSFET and SCR Timer Circuit

The MOSFET/SCR timer features a constant-current source to charge C1. C1 and P1 adapt the time range.You are able to adjust C1 throughout a range of 100 and 1000 uF to modify the time period range. Using a 1 ampere relay you are able to control AC loads as much as 100 watts hooked up to the 1 17 VAC or 220 V mains AC.

To use the device, wire the appliance to the relay contacts (points A and B, utilized like a switch) and alter P1 to the preferred time delay. Press S2 do discharge C1 entirely . Then switch ON S1 to begin. Soon after the set time delay has lapsed, the relay will change state, causing the load to switch ON.

On the other hand, if you have selected NC contact of the relay you are able to switch OFF the connected appliance after the set delay is over. To reuse the unit you have to press S2 to discharge C1 prior to starting.

The diagram above shows basic MOSFET timer circuit.

How it Works

When power is switched ON C1 grounds the FET gate, keeping it switched OFF. Q1 acts like a constant current source, and begins slowly charging C1 at a steady constant current rate. The rate of charging of C1 is determined by the resistance of the pot P1. As soon as C1 charges to the Vgs(th) value of the FET, the FET turns ON, and switches ON the SCR, relay and the load.

The time taken by the C1 to reach the Vgs(th) value of the FET is determined by its own value and the resistance of the adjusted pot P1.

You'll also like:

  • 1.  Simple Programmable Timer Circuit
  • 2.  Make this Drag Race Timer Circuit
  • 3.  Aquarium Fish Feeder Timer Controller Circuit
  • 4.  Automatic Door Lamp Timer Circuit
  • 5.  Digital Clock Activated Water Level Controller Circuit
  • 6.  Timer Controlled Fitness Gym Application Circuit

Filed Under: Timer and Delay Relay Tagged With: MOSFET, Single, Timer

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « Convert a Square Wave Inverter into a Sine Wave Inverter
Next Post: Universal H-Bridge Circuit Module »
Subscribe
Notify of
guest
guest
73 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (84)
  • Datasheets and Components (105)
  • Electronics Theory (140)
  • Free Energy (38)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (89)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • SMPS and Converters (31)
  • Solar Controller Circuits (60)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Simplest AM Radio Circuit
    • Swagatam on Simple Online UPS Circuit
    • Saroj Sahu on Simple Online UPS Circuit
    • michel van simaeys on Simplest AM Radio Circuit
    • Swagatam on Simplest AM Radio Circuit

    © 2025 · Swagatam Innovations