• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Mini Projects / Simple Triac Timer Circuit

Simple Triac Timer Circuit

Last Updated on February 23, 2020 by Swagatam 153 Comments

Here's a simple triac timer circuit which can be used for switching ON a particular device after a predetermined time, set through the given pot or the variable resistor.

The shown circuit diagram of a simple triac timer can be understood by referring to the following explanation:

How it Works

The left hand side section comprising the IC 4060 becomes the basic delay generator stage. As we all know, the IC 4060 is an extremely versatile time delay generator chip which has a built in oscillator for the required fundamental timing clocks.

The components connected at the pin#9,10 and 11 form the time delay determining parts of the IC.

Precisely, the resistor at pin#10 and the capacitor at pin#9 are responsible for fixing the delay period and may be adjusted for acquiring the required predetermined switching output.

This IC has 10 discrete outputs which produce delays or oscillation periods which are twice to the previous pinout in the order.

Here pin#3 produces the largest delay, followed by pin#2 and then pin#1 and so on as per the specified pinout order. So suppose pin#3 produces delay interval of 1 minute, then pin#2 would produce the same at an interval of 30 seconds, pin#1 at 15 seconds and so on.

Since pin#3 is specified with the highest time interval, we use this pinout as the output.

Therefore suppose we set the RC at pin#9 and 10 with a maximum delay of 2 hours, pin#3 would be assigned to generate alternately changing ON/OFF pulses, having equal delay intervals of 2 hours, meaning initially the output would be OFF for 2 hours, then ON for next 2 hours and so on as long as its powered.

The above explains the IC 4060 configuration, now let's learn about the triac configuration.

As we can see, the output pin#3 is directly connected to the gate of the triac, while the triac A1 and A2 are terminated with the load and the other specified parameters.

When power is first switched ON, C3 at pin#12 of the IC4060 makes sure that the timing count initiates right from zero by resetting pin#12 with a short pulse.

The output pin#3 now initiates with a logic zero output while the IC internal timer starts counting.

Due to the logic zero, the triac stays switched OFF initially along with the load.

Once the predetermined delay interval lapses, pin#3 instantly becomes high, triggering the triac and the load.

The diode connected across pin#3 and pin#11 plays an important function of latching the IC counting process.

If this diode is removed, the counting process will continue and after 2 hours the triac will be again become switched OFF, and this procedure will go on repeating every after 2 hours.

The diode shuts off this operation, and lathes the IC to the ON position permanently.

The above situation provides us with another interesting application of the proposed circuit, by removing the diode we can convert the above circuit into an AC lamp flasher circuit, the flashing rate being set by the RC components.

Also note that irrespective of the RC parts you have the option of selecting/connecting the remaining outputs of the IC with the triac gate for getting a diverse range of time delays.

Circuit Diagram for Delay ON Timer

caution electricity can be dangerous

The above triac controlled timer circuit becomes suitable for applications which requires a delay switch ON.

For applications which require a delay switch OFF meaning in cases where a load needs to be switched off after a predetermined time interval, the above circuit can be modified as given below:

Circuit Diagram for Delay OFF Timer

PCB Layout

triac timer circuit PCB layout

Parts list for the above simple triac timer circuit

  • R1 = 2M2
  • R3 = 100K
  • R2, R4, R6 = 1K
  • R5 = 1M
  • C1 = 1uF/25V (must be non-polar, use more in parallel for higher delays)
  • C3 = 0.1uF disc
  • C2 = 100uF/25V
  • C4 = 0.33uF/400V
  • Z1 = 15V 1watt zener
  • Tr1 = BT136
  • T1 = BC547
  • D1, D2 = 1N4007
  • P1 = 1M pot

Using a Transformer DC Supply

The above simple timer circuit can be also built using a transformer DC supply, as shown below:

All diodes are 1N4007, and the relay is 12V/400 ohm, 10 amp

You'll also like:

  • 1.  Simple Water Heater Alarm Circuit
  • 2.  Car Tank Water Sensor Circuit
  • 3.  3 Simple Solar Panel/Mains Changeover Circuits
  • 4.  Make a Simplest Temperature Indicator Circuit
  • 5.  How to Connect IC 4066 in a Circuit
  • 6.  2 Simple Infrared (IR) Remote Control Circuits

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
153 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz