• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Motor Controller / How to Convert 3 phase AC to Single phase AC

How to Convert 3 phase AC to Single phase AC

Last Updated on February 29, 2020 by Swagatam 59 Comments

caution electricity can be dangerous

The post discusses how to convert 3 phase AC to single phase AC through a special bridge rectifier at any desired voltage. The idea was requested by Mr. Chaquito

Technical Specifications

You have a very nice page and I find it really good, If been looking for a 380V 3ph converter to 230V, it should with held at least 3-5 KVA. Not sure if you have one or
would you be able to direct me to one.

I have a 3ph input of 5.5KVA from a generator that I would like to convert to one single output of 230V +- 3-5 KVA. Doing the usual ph to neutral per ph would not give me a strong KW output. Transformers are very expensive.

I would appreciate your help thank you.

Chaquito

The Design

The question how to convert 3 phase AC to single phase AC can be solved by first rectifying the 3 phase AC to DC and then converting the DC back to 220 V AC through a full bridge driver IC and H-bridge mosfet network.

The first stage intended for converting the 3 phase AC to DC may be executed simply by the traditional diode bridge network, as may be witnessed in the following diagram. After filtration this would produce a peak of 530 V (with a filter capacitor of around 10uF/1kv included across the load)

Now, once the 3 phase rectified DC is achieved, this will need to be converted to the desired single phase AC, as per the request this value should be 220 V.

A full bridge mosfet driver topology may be incorporated for implementing the above requirement, as shown in the following diagram:

The layout looks simple and easy to configure, however it would produce and subject the load to the full 530 V instead of the specified 220 V.

The issue can be normalized and controlled to the desired levels through an external voltage sensor circuit, which could be further integrated with the Ct pin of the IC IRS2453.

The simple solution can be implemented by incorporating the following circuit:

The 220k preset is adjusted precisely so that the transistor just begins conducting at voltages around 240 V across the load.

When the transistor conducts, the Ct pin is grounded at that instant, forcing the IC to inhibit its oscillations which in turn renders the high side outputs to go low, cutting off the rectified high voltage to the mosfets.

This results in lowering down of the voltage across the load which allows the BC547 to switch OFF and restore the IC operations....the procedure repeats making sure that the output stays under control and at the specified 220 V level.

You'll also like:

  • 1.  Compact 3-Phase IGBT Driver IC STGIPN3H60 – Datasheet, Pinout
  • 2.  Temperature Triggered DC Fan Speed Controller
  • 3.  How to Make a 3 Phase VFD Circuit
  • 4.  3 Simple DC Motor Speed Controller Circuits Explained
  • 5.  Greenhouse Motorized Water Diverter and Humidity Controller Circuit
  • 6.  High Wattage Brushless Motor Controller Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
59 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (120)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz