• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About Us | Contact | Disclaimer | Copyright | Videos 

Op Amp Basics | 555 Circuits | Hobby Circuits | LED Driver | For Beginners | Basic Circuits | Transistor Circuits | Voltage Regulators 

You are here: Home / Mini Projects / 1 Hz to 1 MHz Frequency Reference Generator Circuit

1 Hz to 1 MHz Frequency Reference Generator Circuit

Last Updated on March 9, 2021 by Swagatam 36 Comments

This circuit is an universal frequency generator which you can use in numerous frequency and time period testing applications. It is primarily well suited for a gate pulse generator in frequency counters.

The circuit is capable of generating an entire range of reference frequencies such as 1 Hz, 5 Hz, 10 Hz, 50 Hz, 100 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz

The center of the circuit design is a 1 MHz crystal oscillator configured using a couple of NAND gates.

caution electricity can be dangerous

A 3rd NAND gate acts like a buffer at the output of this oscillator output of this oscillator, dividing down by a number of 7490 decade counters.

These incorporate a divide-by-2 stage accompanied by a divide-by-5 stage, that suggests that along with dividing the reference frequency down to 1 Hz in decades, signals of 500 kHz and lower values up to 5 Hz are likewise obtainable.

All these signals are specifically useful where gate pulses for counting frequency become necessary. For instance, the 5 Hz output will give you positive pulses of 100 ms width, thus when the frequency of a 10 MHz signal is tested, a gate pulse of this length might allow through 11500,000 cycles of the signal to the counter, presenting a display of 10,00000.

Alternatively, for time calculations the 1 Hz to 1 MHz outputs tend to be more beneficial. As an example, while computing a single second interval, 1,000,000 cycles of the 1 MHz output could be measured, offering a display of 10001300.

Table of Contents
      • PCB Design
  • Crystal Controlled Time base Generator
    • How to Calibrate

PCB Design

The PCB design and structure is very stream-lined and effectively presented. The outputs are obtainable across the lower edge of the board layout diagram. There exists one extra NAND-gate in the bundle intended for the oscillator, which can be employed as the gate in frequency counter applications.

The wiring contacts to this are introduced at the top right corner of the board. The oscillator frequency could be tweaked to precisely 1 MHz through the trimmer capacitor.

The ideal way of accomplishing this is by using an oscilloscope to examine the 100 kHz output with the 200 kHz Droitwich reception, and applying Lissajous figure. The trimmer must, naturally, be fine-tuned until the Lissajous number stops rotating.

Crystal Controlled Time base Generator

This precision crystal controlled time base circuit is constructed utilizing common easily available CMOS ICs and a inexpensive crystal. This circuit provides the user the configurations for obtaining 50 Hz, 100 Hz or 200 Hz. The 50 Hz reference frequency can be normally applied as a time base for calibrating electronic clocks, frequency meters and many others. IC1 is made up of an oscillator and a 20 divider.

Assuming that the oscillator loop is accurately calibrated through C2, the output at pin 3 (Q14) will generate a 200 Hz square wave. By using the two flip-flops from IC2 rge resulting square wave voltage is subsequently divided by 2 and after that by 4 contributing to a couple of additional outputs of 100 Hz and 50 Hz.

How to Calibrate

The 50 Hz being generated from pin 1. Hobbyists possessing a frequency meter can easily calibrate this crystal controlled time base generator circuit by merely hooking up the meter to pin 7 of IC1 (Q4) and fine-tuning C2 until a display of 204.800 Hz is seen on the meter. As a topic of curiosity, any uer not having a frequency meter probably should not lose heart, because adjusting the trimmer C2 to around at the center point, might be just enough to get adequate precision for the majority of applications.

The 100 Hz output is advantageous for the designing of digital counters.For this particular application we recommend that a 1 : 10 divider IC (like the IC 4518) is attached to the 100 Hz output pin. The power supply specifications are: between 5 .. . 15 V and 0.5… 2.5 mA.

You'll also like:

  • 1.  How to Make a Simple 12 Volt LED Lantern Circuit
  • 2.  Laser Communicator Circuit – Send, Receive Data with Laser
  • 3.  Simple LED Tubelight Circuit
  • 4.  8 Simple Metal Detector Circuits Explained
  • 5.  4 Simple Uninterruptible Power Supply (UPS) Circuits Explored
  • 6.  Simple Colpitts Oscillator Circuits Explained

About Swagatam

Swagatam is an electronic engineer, hobbyist, inventor, schematic/PCB designer, manufacturer. He is also the founder and the author of the website: https://www.homemade-circuits.com/, where he loves sharing his innovative circuit ideas and tutorials.
If you have any circuit related queries, you may interact through comments, and get guaranteed replies from the author.

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
36 Comments
Newest
Oldest
Inline Feedbacks
View all comments


Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (27)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (126)
  • Battery Chargers (83)
  • Car and Motorcycle (96)
  • Datasheets (78)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (121)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (14)
  • GSM Projects (9)
  • Health Related (22)
  • Heater Controllers (31)
  • Home Electrical Circuits (107)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (13)
  • LED and Light Effect (98)
  • LM317/LM338 (22)
  • LM3915 IC (25)
  • Meters and Testers (69)
  • Mini Projects (150)
  • Motor Controller (69)
  • MPPT (7)
  • Oscillator Circuits (25)
  • PIR (Passive Infrared) (8)
  • Power Electronics (35)
  • Power Supply Circuits (86)
  • Radio Circuits (10)
  • Remote Control (50)
  • Security and Alarm (66)
  • Sensors and Detectors (131)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (63)
  • Timer and Delay Relay (55)
  • TL494 IC (5)
  • Transformerless Power Supply (9)
  • Transmitter Circuits (42)
  • Ultrasonic Projects (17)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz