• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • 1000+ Circuits
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results
You are here: Home / Mini Projects / IC 555 Oscillator, Alarm and Siren Circuits

IC 555 Oscillator, Alarm and Siren Circuits

Last Updated on February 22, 2020 by Swagatam 5 Comments

In this post we will learn how to build and optimize basic IC 555 oscillator circuits, whose waveforms can be further enhanced for generating complex sound effects such as warble alarm, police siren, red-alert alarm, star trek alarm etc.

Overview

The basic mode that is normally employed for making IC 555 oscillators is the astable circuit mode.

If we look at the astable circuit shown below, we find the pinouts joined in the following manner:

  • Trigger pin 2 shorted to Threshold pin 6.
  • A resistor R2 connected between pin 2 and the discharge pin 7.

In this mode, when power is applied, the capacitor C1 exponentially charges via resistors R1 and R2. When the charge level climbs up to 2/3rd level of the supply voltage, causes the discharge pin 7 to go low. Due to this, C1 now begins discharging exponentially, and when the discharge level falls down to 1/3rd supply level, sends a trigger at pin 2.

1 khz oscillator circuit using IC 555

When this happens pin 7 again turns high initiating the charging action on the capacitor until it teaches the 2/3rd supply level. The cycle continues infinitely establishing the astable mode of the circuit.

The above working of the astable results in two types of oscillations to occur across C1 and across the output pin 3 of the IC. Across C1, the exponential rise and fall of voltage creates a sawtooth frequency to appear.

The internal flip flop responds to these sawtooth frequency and converts then into rectangular waves at the output pin 3 of the IC. This provides us with the required rectangular wave oscillations at the output of the IC pin 3.

Since the oscillation frequency entirely depends on R1, R2, and C1, the user is able to alter the values of these components to get any desired values for the ON OFF periods of the oscillation frequencies, which is also called PWM control or duty cycle control.

The graph above provides us with the relationship between R1, and C1.

R2 is ignored here because its value is negligibly small compared to R2.

Basic Square wave oscillator circuit using IC 555

From the above discussion we learned how an IC 555 can be used in it astable mode to create a basic squarewave oscillator circuit.

The configuration allows the user to vary the values of R1, and R2 right from 1K to many mega ohms for getting a huge range of selectable frequencies and duty cycles at the output pin 3.

However, it must be noted that R1 value shouldn't be too small since the effective current consumption of the circuit is determined by R1. This happens because during each C1 discharge process pin 7 attains the ground potential subjecting R1 directly across the positive and the ground line. If its value is low, there may be a significant current drain, increasing overall consumption of the circuit.

R1 and R2 also determines the width of the oscillatory pulses produced at pin 3 of the IC. R2 specifically can be used for controlling the mark/space ratio of the output pulses.

For the various formulas for calculating the the duty cycle, frequency, and PWM of a IC 555 oscillator (astable) can be studied in this article.

Variable Frequency Oscillator using IC 555

The astable circuit explained above can be upgraded with a variable facility which allows the user to vary the PWM and also the frequency of the circuit as desired. This is simply done by adding a potentiometer in series with the resistor R2 as shown below. The value of R2 must be small compared to the pot value.

Simple variable IC 555 oscillator circuit

In the above set up, the frequency of oscillation can be varied right from 650 Hz, to 7.2 kHz through the indicated pot variations. This range can be even further increased and enhanced by adding a switch for selecting different values for C1, since C1 is also directly responsible for setting the output frequency.

Variable PWM Oscillator Circuits using IC 555

The figure above shows how a variable mark space ratio facility can be added to any basic IC 555 astable oscillator circuit through a couple diodes and a potentiometer.

The feature allows the user to get any desired PWM or adjustable ON OFF periods for the oscillations at the output pin 3 of the IC.

In the left side diagram, the network involving R1, D1, and the pot R3 alternately charges C1, while the pot R4, D2 and R2 alternately discharges the C1 capacitor.

R2, and R4 determine the rate of charge/discharge of C1, and can be adjusted suitably for getting the desired ON/OFF ratio for the output frequency.

The right side diagram shows R3 position shifted in series with R1. In this configuration, the charge time of C1 is fixed by D1 and its series resistor, while the pot only allows the control for the discharge time of C1, hence the OFF time of output pulses. The other pot R3 essentially helps to alter the frequency of the output instead of the PWM.

Alternatively, as shown in the above figures, it may be also possible to connect the IC 555 in the astable mode for discretely adjusting the mark/space (ON time/OFF time) ratio without affecting the oscillatory frequency.

In these configurations the length of the pulses inherently increases as the interval of space is reduced, and vice versa.

Due to this, the total period of each square wave cycle remains constant.

The main feature of these circuits is the variable duty cycle, which can be varied right from 1% to 99% with the help of the given potentiometer R3.

In the left side figure, C1 is charged alternately by R1, the upper half of R3, and D1, while it's discharged by means of D2, R2, and the lower half of potentiometer R3. In the right side figure, C1 is alternately charged via R1 and D1 and the right half of potentiometer R3, and it discharged through the left half potentiometer R3, D2, and R2.

In both the above astables the value of C1 sets the oscillatory frequency to around 1.2 kHz.

How to Pause or Start/Stop IC Astable Oscillator Function with Push Button

You can trigger an IC 555 astable oscillator ON/OFF in a few simple ways.

It can be done using push buttons or through an electronic input signal.

In the figure above pin 4 which is the reset pin of the IC is grounded through R3, and a push-to-ON switch is connected across the positive supply line.

Pin 4 of IC 555 needs minimum 0.7 V to remain biased and to keep the IC functioning enabled. Pressing the button enables the IC astable oscillator function, while releasing the switch removes the biasing from pin 4 and the IC function gets disabled.

This can be also implemented through a external positive signal on pin 4 with the switch removed and R3 connected as is.

using pin 4 reset of IC 555 to interrupt oscillator frequency

In the other alternative as shown above, pin 4 of the IC can be seen permanently biased via R3 and the positive supply. Here the push button is connected across pin 4 and ground. This implies when the push button is pressed disables the IC output square waves, causing the output to turn 0V.

Releasing the push button commences the generation of the astable square waves normally across pin 3 of the IC.

The same can be achieved through an externally applied negative signal or a 0 V signal at pin 4 with R3 connected as is.

Using pin 2 For Controlling Astable Frequency

using pin 2 of IC 555 to interrupt its oscillatory frequency

In our earlier discussions we learned how the pulse generation of a IC 555 could be controlled through pin 4.

Now we will see how the same may be achieved through pin 2 of the IC as shown above.

When S1 is pressed, pin 2 is suddenly applied with a ground potential, causing the voltage across C1 to drop below 1/3rd Vcc. As we know that when pin 2 voltage or the charge level across C1 is held below 1/3rd Vcc,, the output pin 3 goes high permanently.

Therefore pressing S1 causes a voltage drop across C1 below 1/3rd Vcc forcing the output pin 3 to go high as long as S1 remains pressed. This inhibits the normal working of astable oscillations. When the push button is released, the astbale function is restored back to normal conditions. The waveform on the right side acknowledges the pin 3 response to the pressing of the push button.

The above operation can be likewise controlled using an external digital circuit through the diode D1. A negative logic at the cathode of the diode initiates the above actions, while a positive logic has no effect, and allows the functions of the astable to restore its normal working.

How to Modulate IC 555 Oscillator

Pin 5, which is the control input of IC 555, is one of the important and useful pinouts of the IC. It facilitates the user to modulate the output frequency of the IC simply by applying an adjustable DC level on pin #5.

A rising DC potential causes the output frequency pulse width to increase proportionately, while lowering the DC potential causes the frequency pulse-width to become narrower proportionately. These potentials should be strictly within the 0V and the full Vcc level.

how to modulate IC 555 output frequency using pin 5 control input

In the above figure adjusting the pot generates a varying potential at pin 5 which causes the output pulse width of the oscillation frequency to change accordingly.

Since the modulation causes the output pulse width to change it also affects the frequency, since C1 is forced to change its charge/discharge periods depending on the pot setting.

When a varying AC having an amplitude between 0V, and Vcc is applied at pin 5, the output PWM or pulse width also follows the varying AC amplitude generating a continuous train of widening and narrowing pulses a pin 3.

An AC signal can be also used for the modulation, simply by integrating pin 5 with an external AC though a 10uF capacitor.

Making Alarms and Sirens with IC 555

The versatile astable oscillator configuration of IC 555 allows us to implement it for making various types of sirens and alarm circuits. This becomes possible because an astable is basically a waveform generator, and can be customized for generating different types of sound waveforms, resembling alarm and sirens sounds.

simple monotone IC 555 alarm circuit

In the figure above we can see the IC 555 configured as a 800 Hz frequency monotone alarm circuit.

The speaker can have any impedance value, due to the presence of the current limiting resistance Rx. A safe value could be around 70 Ohms 1 watt.

For making a high power continuous tone alarm circuit we cam upgrade the above circuit through a power transistor driver Q1 and a more powerful loudspeaker, as shown below:

powerful monotone 800 Hz alarm circuit using the IC 555

Since the design may produce a high level of ripple volatge, D1 and C3 are included to prevent the ripple interference with the IC 555 functioning.

Diodes D2 and D3 are included to neutralize the inductive switching spikes generated from the speaker coil, and to safeguard the transistor Q1 against damage.

Pulsed IC 555 Alarms Circuit

The previous 800 Hz monotone alarm could be converted into a more intresreting pulsed 800 Hz alarm by adding another astable multivibrator with the tone generator circuit as shown below.

two tone pulsed alarm using IC 555

We have already studied how pin 5 can be used for controlling the pulse width of the IC 555.

Here IC 2 is configured as a 1 Hz oscillator circuit which causes pin 5 of IC 1 to alternately become low at a 1 Hz rate. This in turn causes pin 3 800 Hz pulse width to narrow to an extent which almost turns OFF Q1. This produces a 1Hz sharp pulsed alarm effect on the loudspeaker.

Warble He-Haw Alarm Circuit

Warble alarm circuit using the IC 555 astable

If you want to convert the previous design into an ear piercing warble alarm, you can do it by simply replacing the D1 diode with a 10 K resistor as revealed in the above diagram. Also known as he-haw alarm, these are commonly used in European emergency vehicles.

We know that pin 5 can be used with an external high/low signal for modulating the pin 3 output with a corresponding widening/narrowing pulse widths. The 1 Hz alternate high low supply at pin 5 of IC2 forces the output pin #3 voltage of IC 1 to generate a symmetrically changing frequency varying from 500 Hz to 440 Hz. This causes the speaker to generate the required sharp high volume warble alarm sound at 1 Hz rate.

Making a Police Siren

police siren sound effect using IC 555 circuit

The IC 555 can be also used for making a perfectly imitating police siren circuit as demonstrated above.

The circuit is designed to produce the typical wailing sound commonly heard in police sirens.

Here IC2 is connected as a low frequency oscillator with a frequency set at a 6 second ON OFF rate.

The slow exponential triangle wave ramp generated across its C1 is fed at the base of Q1 configured as an emitter follower.

The frequency of IC1 is set at 500 Hz which becomes its center frequency.

The slow rising and falling ramp at base of Q1 follows at its emitter and modulates pin 5 of IC1. The slow ramp causes alternate cycles of slow rising voltage for 3 seconds, and slow decaying voltage for the 3 seconds on pin 5. Due to this pin 3 frequency and PWM also modulates accordingly generating the wailing police siren sound effect.

Red Alert Star Trek Alarm Circuit

red-alert star trek alarm circuit using IC 555

The final circuit in the list is another very interesting sound effect generator using the IC 555 astable oscillator. It is the red-alert alarm sound generator, also called the star trek alarm due to its frequent use in the popular TV series star trek.

Typically, the red alert alarm sound initiates with a low frequency tone, that rises to a high frequency note within a quick span of around 1.15 seconds, and cuts off for 0.35 seconds, and again rises from a low to high frequency, and the cycle continues giving rise to the star trek red-alert alarm sound.

Just like the previous alarm and siren sound circuits, this circuit also keeps repeating the sequence as long as it remains powered.

The IC 2 here is configured as a non symmetrical oscillator circuit. The capacitor C1 is alternately charged through the elements R1 and D1, and is alternately discharged through R2.

This produces a quick rising and fading sawtooth pluses across the capacitor C1. This ramping signal is buffered by the emitter follower and applied as a modulating voltage to the control input pin 5 of IC1 via R7.

Due to the sawtooth nature this waveform causes the pin 3 output frequency of IC1 to gradually rise for the slow decaying portion of the waveform, and then quickly drops during the collapsing part of the waveform.

During each of the decaying section of the waveform cycle, the corresponding rectangular pulse from pin 3 of IC2 instantly switches OFF Q2, which in turn causes pin2 of IC2 to go low. This interrupts the C2 output and the rising tone on the speaker, giving rise to the peculiar red alert star trek alarm sound effect.

Back to You

Well these were some hints regarding how to use IC 555 for creating useful alarm and siren oscillator circuits. Do you have any other interesting sound effect generator using IC 555? If you do, please provide the details here, we will be most happy to include it in the above list.




Previous: 10 Best Timer Circuits using IC 555
Next: Red LED LightStim Circuit for Removing Facial Wrinkles

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  5 Simple Water Level Controller Circuits
  • 2.  5 Simple Alarm Circuits for Protecting your Home/Office from Theft
  • 3.  Underwater LED Boost Converter Circuit with Dimmer
  • 4.  Simple Circuit Tester Probe – PCB Fault-Finder
  • 5.  Understanding Crystal Oscillator Circuits
  • 6.  4 Simple Power Bank Circuits Explained

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. Pedro Roga says

    Thank you, sir, for the answer.
    I really appreciate it.
    I will build it to see, but I’m affraid it is not usable for my project. It is for a mailbox outside that tells me inside that there is post. By blinking.

    Reply
  3. Pedro Roga says

    Dear Sir,
    I wonder if you can help me out with this.
    I want to build a circuit, bistable, with 2 buttons. The led I want it to blink. The circuit I build
    already, but I can’t have the led blinking. Is this possible? Maybe I have to use it with another
    led driver or a second 555 IC. The second button is to reset of course. I’m also trying to use it
    with a LDR to have the led blinking. The led has to blink but it must stay on, even when it is
    dark again, until I reset it with the reset button. I don;t know if this is possible

    Thank you.

    Reply
    • Swagatam says

      Hello Pedro, if you want to make the LED blink, then you can replace your existing LED with the following circuit module:

      https://www.homemade-circuits.com/how-to-make-single-transistor-led/

      Reply
  4. Bill Clark says

    Hi Swag; I am a keen boat modeller and require an engine noise generator. As I have three electric motors this is going to be very expensive. I’ve been experimenting with your astables without success. Many years ago I saw a circuit in a journal which used 4 x 555 chips with a ldr connected to pin 5&6 taking a pulse from the motor flywheel which gave a chuff/bang noise and could be tuned at each 555 by a variable pot, all 4 were then integrated by a simple mixer to drive an amp. I’m afraid this is all I can remember about the circuit. I know your very busy but can you help. Best regards Bill

    Reply
    • Swagatam says

      Hi Bill, I found one simple looking circuit in this site, you can just give it a shot, and hope it just works out:

      makingcircuits.com/blog/motor-boat-sound-generator-circuit/

      Reply


  5. COMMENT BOX IS MOVED AT THE TOP


Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (92)
  • 741 IC Circuits (18)
  • Amplifiers (48)
  • Arduino Engineering Projects (82)
  • Audio Projects (83)
  • Battery Chargers (75)
  • Car and Motorcycle (87)
  • Datasheets (44)
  • Decorative Lighting (Diwali, Christmas) (31)
  • DIY LED Projects (81)
  • Electronic Components (96)
  • Electronic Devices and Circuit Theory (34)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (16)
  • Heater Controllers (23)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (25)
  • Infrared (IR) (39)
  • Inverter Circuits (93)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (52)
  • Mini Projects (152)
  • Motor Controller (64)
  • MPPT (7)
  • Oscillator Circuits (12)
  • PIR (Passive Infrared) (8)
  • Power Electronics (32)
  • Power Supply Circuits (64)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (54)
  • Sensors and Detectors (114)
  • SG3525 IC (4)
  • Simple Circuits (72)
  • SMPS (30)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (36)
  • Ultrasonic Projects (12)
  • Water Level Controller (45)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2021 · Swagatam Innovations

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok