• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Sensors and Detectors / Clap Switch Circuits with Relay ON/OFF: [Tested]
warning message: electricity is dangerous, proceed with caution
clap switch

Clap Switch Circuits with Relay ON/OFF: [Tested]

Last Updated on June 27, 2025 by Swagatam 219 Comments

The clap switch circuits explained here will toggle a connected load ON and OFF in response to alternate clap sounds? Here I have explained 4 unique and simple designs which can be selected as per user preference.

Table of Contents
  • How Sound Vibrations Trigger the Circuit
  • 1) Clap Switch Circuit Using IC 741.
  • Parts List
  • 2) Clap Switch Using Transistors or BJTs
  • Parts List
  • How it Works
  • Using BJTs and Power Supply
  • 3) Double Clap-Clap Switch Circuit
  • Circuit Operation
  • Another Double Clap Switch Circuit
  • PCB Design and Component Overlay
  • How to Connect 220V Load to Clap Switch Relay

The article talks about what the title suggests – a clap switch. A small electronic circuit when built and integrated to any electrical appliance can be made to switch ON/OFF through mere hand clapping.

The proposed design when integrated to any of your electrical appliance can be used to switch it ON and OFF simply through alternate clapping of your hand.

The device becomes more interesting and useful because it does not require any external mechanism or device to carry out the specified operations.

How Sound Vibrations Trigger the Circuit

As you must have noticed the clapping of hands creates a loud sound and is sharp enough to move quite a distance.

The generated sound is in fact strong ripples or vibrations created due to the sudden compression of air in between our striking palms.

A mic is connected to the amplifier stage; the sound vibrations made by clapping hits the mic and get converted into tiny electrical pulses. These electrical pulses are amplified to suitable levels by the transistors or IC and are fed to the flip/flop.

The flip flop is a bistable relay circuit which switches ON/OFF the attached relay alternately in response to each clap sound.

The circuit presented here is basically made up of two stages, the first stage is a two transistor hi-gain amplifier and the second stage consists of an efficient flip/flop.

The flip/flop stage alternately switches the output relay driver in response to every subsequent clapping. The load connected to the relay thus also gets activated and deactivated correspondingly.

The circuit may be further understood with the following explanation.

1) Clap Switch Circuit Using IC 741.

clap switch circuit using IC 741 opamp

The above clap operated relay circuit was provided to me by one of the keen readers of this blog Mr. Dathan.

The circuit is very easy to understand:

The opamp here is configured as a comparator, meaning it is positioned to differentiate the slightest of voltage differences across its two inputs.

When the clap sound hits the mic, a momentary drop of voltage is experienced at pin#2 of the IC, this situation raises the voltage at pin#3 of the IC for that instant.

As we know, with pin#3 at higher potential than pin#2 makes the output of the IC high, the condition puts the output of the IC go high momentarily.

This high response triggers the IC 4017 pin#14, and forces its output to either move from pin#2 to pin#3 or vice versa depending upon the initial situation of the outputs.

The above action switches the load accordingly either to ON or OFF position.

The above 12 V clap triggered switch circuit using IC 741 was successfully tried and tested by Mr. Ajay Dussa. The following prototype images for the same were sent by Mr. Ajay.

clap switch tested prototype on breadboard
tested clap switch design on veroboard

The PCB design (track layout) for the above can be seen below, as designed by Mr. Ajay:

clap activated switch circuit PCB track side layout

Parts List

CategoryPartSpecificationNotes
SemiconductorsIC1741 operational amplifier
IC2CD4017 decade counter IC
T1BC547 NPN transistor
D1OA79 or 1N4007 diodeFlyback diode for relay protection
Capacitors-No capacitors in the schematic
ResistorsR122kΩ, ¼W
R21kΩ, ¼W
R3470Ω, ¼W
R410kΩ, ¼W
R5470Ω, ¼WConnected to LED
R61kΩ, ¼WBase resistor for T1
PotentiometerVR11kΩ variable resistor (trimmer)Used for sensitivity adjustment
LED-Red LEDIndicator output
MicrophoneMICElectret microphoneSound detection input
RelayK16V, 100Ω SPST relay switchUsed for switching external load
Power SupplyB19V batteryCircuit power source

2) Clap Switch Using Transistors or BJTs

In the above explanations I have explained a simple clap activated switch circuit which incorporated an IC for implementing the desired ON/OFF toggling actions. The present design uses a different principle and utilizes only transistors for the above triggering actions.

simple clap switch ON OFF circuit using IC 4017

Clap Switch Video Demonstration

Parts List

  • R1 = 5k6
  • R2 = 47k
  • R3 = 3M3
  • R4 = 33K
  • R5 = 330 OHMS
  • R6 = 2K2
  • R7 = 10K
  • R8 = 1K
  • R9, R10 = 10K
  • C1, C4 = 0.22uF
  • C2 = 1uF/25V
  • C3 = 10uF/25V
  • T1, T2, T4 = BC547
  • T3 = BC557
  • All IC diodes = 1N4148
  • Relay diode = 1N4007
  • IC = 4017
  • Relay = 12v / 400 ohms

How it Works

The figure above shows a straight forward two stage sound activated switch.

The first stage comprising T1, T2, and  T3 forms a hi-gain common emitter amplifier configuration.

A mic is connected at the base of T1 via blocking capacitor C1.

Strong sound vibration hitting the mic is instantly picked and converted into tiny electrical pulses.

These are in fact small AC pulses easily make there way through C1 into the base of T1.

This creates a kind of push-pull effect and T1 also conducts in the corresponding way.

However the response of T1 is relatively weak and requires further amplification.

Transistors T2/T3 are introduced exactly for this and help to improve the voltage peaks created by T1 to appreciable levels (almost equal to the supply voltage.)

The above voltage pulse is now ready to be use for toggling the relay ON/OFF and is fed to the relevant stage.

IC 4017 as we all know produces sequential shifting of its output pin-outs (logic high) in response to every positive pulse at its clock input pin 14.

The amplified clap sound voltage pulse is applied to pin 14 of the above IC, this flips the output of the IC to either a logic high or a logic low depending upon the initial status of the relevant pin-out.

This triggered output is appropriately collected at the diode junctions and used to toggle a relay through a relay driver transistor T4.

The relay contacts ultimately goes to a load or an appliance which is correspondingly switched ON and OFF with every subsequent claps.

Using BJTs and Power Supply

Looking at the circuit diagram we see that the entire circuit has been configured around ordinary general purpose transistors.

The functioning of the circuit may be understood with the following points:

Transformer X1 along with the D1 and the capacitor C4 forms the basic power supply circuit for providing the required power to the circuit.

The first stage which includes R1, C1, R2, R3, R4 and Q1 form the input sensor circuit.

The next corresponding stages consisting of Q2 and C3 form the flip flop stage and makes sure that the signals from the input sensor stage is appropriately converted into alternate toggling of the output.

The output stage consists of a single transistor Q4. It is basically configured as a relay driver stage for translating the alternate ON/OFF actions from the previous stage into physical toggling of the connected load across the relay terminals.

The design is very old, I built it in my school days by assembling a kit. The circuit diagram using transistors is shown in below:

clap switch circuit using transistors with flip flop

Parts List

  • R1 - 15K
  • R2,R5,R12- 2m2
  • R10, R3 -270K
  • R4 - 3K3
  • R6 - 27K
  • R7,R11 - IK5
  • R8,R9 - 10K
  • R13 - 2K2
  • C3, C1 - 10KPF Disc
  • C2,3 - 47KPF Disc.:
  • C4 - 1000uF/16V;
  • Q1,2,3,4 - BC547B
  • D1 - 1N4007
  • D2,3,4,5 -1N4148 _
  • Xl - 12V/300mA Transformer .
  • MIC - Condenscr Mic
  • RLY — 12V Single Charge over relay

Another version of the above can be seen in the following diagram:

220 V clap switch circuit using transistors
automatic 220V clap switch circuit with BJTs

3) Double Clap-Clap Switch Circuit

All the clap-on switch circuits explained above have the ability to operate only with single alternate clap sounds.

This feature makes the circuit vulnerable to external sounds which might occur occasionally triggering the connected load with the circuit.

A double clap operated circuit thus becomes more suitable and resistant to spurious triggering due to the fact that it would toggle only in response to two subsequent clap sounds instead of one.

The explained circuit is simple yet effective and does not employ microntrollers for the implementation unlike other circuits on the net.

The circuit has been tested by me, but it is a fairly complex design it's important to first understand the stages convincingly, and then build it to avoid failures.

Circuit Operation

The proposed clap-clap circuit or double clap circuit functioning may be understood with the following points:

The lower stage is basically a simple sound activated switch circuit which would activate with any loud sound.

The IC 741 is rigged like a comparator with its pin#2 referenced at some optimal fixed potential determined by  the setting of the given preset VR1.

Pin#3 of the IC becomes the sensing input of the IC and is connected with a sensitive mic.

The adjoining IC 4017 is a bistable stage which activates the connected relay driver stage and the load alternately in response to every positive high pulse at its pin#14.

When  a loud sound such as a "clap" hits the mic, it momentarily grounds pin#2 of the IC741 resulting in a momentary high pulse at its pin#6.

If we connected this output to pin#14 of IC4017 would have resulted in an instant toggling of the load with every single sound input which we don't want here to happen, therefore the response at pin#6 of  IC741 is broken and diverted to an IC 555 monostable stage.

How IC 555 is Configured

The IC 555 circuit is rigged in such a way that when its pin#2 is grounded, its output pin#3 becomes momentarily high for some period of time depending upon the values of the 10uF capacitor.

When a sound hits the mic, the high pulse from IC741 output triggers the BC547 attached to pin2 of IC555 which momentarily grounds pin#2 of IC555, which in turn put its pin#3 high.

However the instantaneous high at pin#3 of IC555 takes a while to reach the connected BC547 due to the presence of the 33uF capacitor.

By the time the 33uF charges and switches ON the transistor, the potential at the collector of the transistor is already gone due the absence of the clap sound which happens only momentarily.

However with the application of the immediate subsequent clap provides the required potential at the collector of the transistor which is now allowed to the reach pin#14 of the IC 4017.

Once this happens the relay driver triggers or deactivates depending upon its initial condition.

The toggling of the load thus takes place only in response to a pair of clap of sounds making the circuit reasonably foolpoof.

double clap clap activated switch circuit

Another Double Clap Switch Circuit

High pitched sound generated by clap of hands, click of fingers and a various other methods can be used to trigger the next circuit.

The design necessitates a minimum of two intense clap sound pulses to initiate the triggering.

This significantly minimizes the chance of unwanted haphazard switching of the device, due to spurious accidental sound.

high sensitivity clap switch circuit

The first sharp hand clap is detected by the electret microphone and is fed into operational amplifier ICI's inverting ( -) input at pin 2 via C1.

The signal negative peak at the pin 6 output of IC1 subsequently activates 555 timer IC2, that is set up like a monostable multivibrator.

The trigger signal reaching the pin 2 input of IC2 is internally extended to toggle the dual D flip-flop IC3. With the help of the three-state counter configuration of IC3.

Not one but two sharp clap sounds are necessary to create a positive output at pin 1 that causes Q1 into switch ON. When Q1 activates the relay and switches its contacts to N/O points.

Any electrical appliance attached to the relay's contacts now switches on.

As soon as pin 1 of IC3 becomes high, it continues to be in that situation until a subsequent two powerful hand claps hit the MIC to repeat and revert the condition.

Thus, it requires two loud sound inputs to switch off the electrical load hooked up to the relay's contacts after the circuit is activated.

PCB Design and Component Overlay

clap switch PCB design

Part List

CategoryPartSpecificationNotes
SemiconductorsIC1741 operational amplifier
IC2555 timer
IC34013 dual D flip-flop
Q12N2222 or similar general-purpose NPN transistor
CapacitorsC1, C2, C3, C40.1 µF ceramic disc15V or more
C547 µF electrolytic15V or more
ResistorsR1, R2, R4, R5, R1010,000 ohms (10kΩ)¼ watt, 5% tolerance
R6150,000 ohms (150kΩ)¼ watt, 5% tolerance
R7, R9100,000 ohms (100kΩ)¼ watt, 5% tolerance
R81 megohm (1MΩ)¼ watt, 5% tolerance
R11220 ohms (220Ω)¼ watt, 5% tolerance
R3100,000-ohm (100kΩ) PC-type trimmer potentiometer
MiscellaneousB19-volt transistor battery
K1SPST reed relay with 5V DC coil (Radio Shack Cat. No. 275-232 or similar)
MICElectret microphone element

How to Connect 220V Load to Clap Switch Relay

The main application of the clap switch circuits described below is for controlling home appliances like light bulbs and fans.

Suppose you want to connect a ceiling fan with this circuit so that you can switch it ON or OFF with alternate clap sound, you can easily do it, by wiring the fan 220 V AC input through the relay of the circuit.

Similarly, if you wish to switch a tube light or any 220 V or 120 V AC lamp, just wire it in series with the relay of the clap switch.

The following image shows how to connect fan with the relay

Clap switch for switching fan ON OFF

The fan regulator can be connected anywhere in series with the wiring.

Any light bulb can be connected with the clap switch relay as given in the folowing figure

Clap switch with bulb light ON OFF

You'll also like:

  • 1.  LPG Leakage SMS Alert using MQ-135 – Get Warning Message in your Cellphone
  • 2.  Using TSOP17XX Sensors with Customized Frequencies
  • 3.  IC 555 Low Battery Indicator Circuit
  • 4.  7 Best Touch Sensor Switch Circuits Explored
  • 5.  Simple Peak Detector Circuit to Detect and Hold Peak Voltage Levels
  • 6.  Simple LDR Motion Detector Alarm Circuit

Filed Under: Sensors and Detectors Tagged With: Circuits, Clap, OFF, ON, Relay, Switch

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « 3 Smart Li-Ion Battery Chargers using TP4056, IC LP2951, IC LM3622
Next Post: Convert Audio Amplifier into Pure Sinewave Inverter »
Subscribe
Notify of
guest
guest
219 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (84)
  • Datasheets and Components (105)
  • Electronics Theory (140)
  • Free Energy (38)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (89)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • SMPS and Converters (31)
  • Solar Controller Circuits (60)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Simple Buck Converter Circuits using Transistors
    • David on Simple Buck Converter Circuits using Transistors
    • Swagatam on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Mark on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Swagatam on Boost Converter Calculator

    © 2025 · Swagatam Innovations