• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Home Electrical Circuits / AC 220V/120V Mains Surge Protector Circuits

AC 220V/120V Mains Surge Protector Circuits

Last Updated on March 16, 2022 by Swagatam 148 Comments

Voltage spikes  can sometimes be a big nuisance as far as the safety of the various electronic appliances are concerned. Let's learn how to make a simple AC Mains surge protector circuits at home.

What is a Surge Protector

A surge protector is an electrical device which is designed to neutralize minor electrical spikes and transients that normally keep appearing in the mains utility lines. These are normally installed in sensitive and vulnerable electronic equipment to prevent them from getting damaged due to these sudden unprecedented surges and voltage fluctuations.

They work by instantaneously short circuiting any excess high voltage that may appear in the mains AC line for a very duration.

This duration is usually lasts in microseconds. Anything above this period of time may cause the surge suppressor itself to burn or get damaged

What is Voltage In Rush

A sudden voltage spike is basically a sharp rise in the voltage lasting not more than a few milliseconds but enough to cause damage to our precious equipment almost instantly.

It thus becomes imperative to stop or block these from entering vulnerable electronic gadgets like our personal computers.

Commercial spike busters are though available pretty easily and cheaply too, cannot be trusted and moreover have no reliability test arrangement so it becomes just a "assuming" game, until it's all over.

Working Design

The circuit of a Simple AC Mains Surge Protector Device below, which shows how to make a simple homemade AC mains high current protector device is based on very simple principle of "speed breaking" the initial jolt through components who are well equipped in the field.

A simple iron resistor and MOV combination are more than enough to provide the protections we are looking for.

Here R1 and R2 are 5 turns of iron wire (0.2mm thick) over a 1 inch diameter air core each followed by an appropriately rated varistor or an MOV connected across them to become a full fledged spike protector system.

Sudden high AC entering the input of spike  are effectively tackled and the "sting" absorbed in the course by the relevant parts and a safe and clean mains is allowed to go through the connected load.

Metal Oxide Varistor (MOV) Calculations and Formulas

The calculation of energy during application of such a pulse is given by the formula:

E = (Vpeak x I peak) x t2 x K
where:
Ipeak = peak current
Vpeak = voltage at peak current
β = given for I = ½ x Ipeak to Ipeak
K is a constant depending on t2, when t1 is 8 μs to 10 μs
A low value of β corresponds to a low value of Vpeak and then to a low value of E.

Transient Protector Using Inductors and MOV

inductor MOV based surge suppressor
caution electricity can be dangerous

Question Regarding Surge Prevention in Electronic Ballast

Hi swagtam, I found your email address from your blog. I really need yr help. Actually my company has customer in china we make UV lamps and we use electronic ballast for it. now the problem is in china because of Over Voltage the ballast burn out so i design circuit which is in attachment which doesn't help either?

so i found your Ultimate High/Low Voltage Protector Circuit which i wants to build. or can you tell me the update if i can do in my circuit that will be great. sorry if i am bothring you. but i really really need yr help to save my job thanks Thank You Krishna Shah

Solution

Hi Krishna, According to me the problem may not be with the voltage fluctuations, rather it's because of the sudden voltage surges that's blowing of your ballast circuit. The diagram shown by you may not prove very effective, because it does not incorporate a resistor or any kind of barrier with the MOVs. You may try the following circuit, introduce it at the entry point of the ballast circuit.

Hope it works:

 

Using an NTC and MOV

The following image shows how two different sudden high voltage suppressor devices could be tied up with the mains line for achieving a double edged safety.

The NTC here enables an initial switch ON current in rush protection by offering a higher resistance due to its initial lower temperature, but in the course of this action its temperature begins increasing and it begins allowing more current for the appliance until a normal working conditions achieved.

The MOV on the other hand complements the NTC output and makes sure that in case the NTC is unable to stop the up-surge onslaught correctly, it switches ON itself shorting the residual high transient content to ground and as a result establishing a safest possible supply for the connected load or the appliance.

RFI Line Filter and Surge Suppression Circuit

If you are looking for a mains AC line filter circuit having a combined protection against radio frequency interference (RFI) suppression, along with voltage surge control, then the following design could prove quite handy.

RFI line filter circuit with surge suppression

As we can see, the input side is protected with an NTC and MOV. The MOV grounds any instantaneous over voltage surge, while the NTC limits an over current surge.

The next stage constitutes an RFI line filter, comprising of a small ferrite transformer and a few capacitors. The transformer arrests and blocks the passage of any incoming or outgoing RFI across the line, while the capacitor network reinforces the effect by grounding the residual high frequency content across the line.

The transformer is built over a small ferrite rod, having two identical winding wrapped one over the other, and one of the winding end connections swapped between the input/output Neutral line.

You'll also like:

  • 1.  Mains AC Overload protection Circuit for Voltage Stabilizers
  • 2.  Simple Home Automation Circuits
  • 3.  Rat Repellent Circuit Diagram
  • 4.  Room Air Ionizer Circuit – For Pollution Free Living
  • 5.  Surge Protected Cheap Transformerless Hi-Watt LED Driver Circuit
  • 6.  Build a 2-Stage Mains Power Stabilizer Circuit – Whole House

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
148 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz