• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Voltage Control and Protection / Surge Arrestor Circuit with Measuring Facility
warning message: electricity is dangerous, proceed with caution
surge

Surge Arrestor Circuit with Measuring Facility

Last Updated on January 2, 2024 by Swagatam 22 Comments

In this post I have explained about a simple surge voltage protector circuit using a fuse and a triac crowbar circuit and also learn the method to record and measure the last maximum surge that could have destroyed the specified load in case the protection was not introduced. The idea was requested by Mr. Akram.

Table of Contents
  • Circuit Objectives and Requirements
  • Surge Arrestor using a Fuse and a Triac Crowbar Circuit
  • Circuit Diagram
  • Measuring and Monitoring Surge Voltage

Circuit Objectives and Requirements

  1. I am akram, a university student from sri lanka.. first i would like to thank you for the excellent work of publishing articles and helping out students.
  2. I need to develop a surge arrestor monitoring device which measure surge currents and when it about to reach its maximum capacity, the device should give signal to remote pc. Basically a surge counter.
  3. Help me with this project sir

Surge Arrestor using a Fuse and a Triac Crowbar Circuit

An ordinary level of surge can be arrested and stopped using the conventional methods such as through MOVs, or NTCs, but a  high voltage surge prevention could require costly devices or complex circuitry, therefore instead of employing such a surge controller it's better to use a method that would completely kill the surge and the associated dangers by blowing of a fuse.

Circuit Diagram

Referring to the above simple surge protection circuit, the triac along with the zener diode and the 47K resistor forms a simple crowbar circuit stage.

The value of the zener diode decides at what input surge level the triacs needs to fire.

Here it is shown as 330V which means, in this design the triac is supposed to fire and conduct when the input mains level exceeds the 330V limit, other values can be selected for other surge levels as preferred by the user.

In a situation where the selected zener limit is exceeded by the input mains, the triac is instantly triggered causing an instant short circuit across the mains line by the triac, which causes the fuse to blow of.

The above procedure makes sure that whenever a high voltage surge appears within the mains line, the fuse is blown of in order to prevent the surge from reaching the load and damaging it.

This takes care of the surge aresstor or controller design, now I have explained how this surge level may be recorded for knowing the exact measure of this surge.

Measuring and Monitoring Surge Voltage

In the diagram above we are able to visualize a diode and a capacitor connected at the extreme right side for the design.

The diode is positioned to rectify the surge AC, and this rectified AC peak surge level entering the capacitor is stored inside it permanently, until it is discharged manually by some means.

This stored surge value can be measured by reading it on any standard digital multimeter.

Once the surge is recorded, the fuse can be replaced back for the the next subsequent surge in rush and for storing the data inside the capacitor.

The diode and the capacitor must  be rated as per the predicted maximum surge voltage, in order to make sure that it does not burn or get damaged in the process.

You'll also like:

  • 1.  Do We Need a Freewheeling Diode Across the Inductor in Boost Converter?
  • 2.  2-Stage Mains AC Voltage Stabilizer Circuit
  • 3.  Designing a Power Factor Correction (PFC) Circuit Using UC3854 – Key Considerations
  • 4.  Mains AC Home Protector Circuit
  • 5.  Automatic Voltage Regulator (AVR) Circuit
  • 6.  SG 3525 Automatic PWM Voltage Regulation Circuit

Filed Under: Voltage Control and Protection Tagged With: Arrestor, Facility, Measuring, Surge

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « How to Interface Cellphone Display with Arduino
Next Post: 27 MHz Transmitter Circuit – 10 Km Range »
Subscribe
Notify of
guest
guest
22 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (84)
  • Datasheets and Components (105)
  • Electronics Theory (140)
  • Free Energy (38)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (89)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • SMPS and Converters (31)
  • Solar Controller Circuits (60)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Simple Buck Converter Circuits using Transistors
    • David on Simple Buck Converter Circuits using Transistors
    • Swagatam on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Mark on Clap Switch Circuits with Relay ON/OFF: [Tested]
    • Swagatam on Boost Converter Calculator

    © 2025 · Swagatam Innovations