Home » Home Electrical Circuits » How to Make a 220V to 110V Converter Circuit
How to Make a 220V to 110V Converter Circuit

How to Make a 220V to 110V Converter Circuit

In this post we will unravel a few homemade crude 220V to 110V converter circuits options which will enable to user the user use it for operating small gadgets with a different voltage specs.


An SMPS circuit is the recommended option for building this converter, so for an SMPS 220V to 110V converter design you can study this concept.

However if you are interested in easier albeit crude 110V converter versions, you may definitely take a tour across the various designs explained below:

 Why we Need 220V to 110V Converter

Primarily there are two AC mains voltage levels that are specified by countries across the globe. These are 110V and 220V. The USA works with a 110V AC mains domestic line while European countries and many Asian countries supply a 220V AC to their cities. Folks procuring imported gadgets from a foreign region having a different mains voltage specs find it difficult to operate the equipment with their AC outlets because of the huge difference in the required input levels.

Though there are 220V to 110V converters available for solving the above issue, these are big, cumbersome and immensely costly.

The present article explains s few interesting concepts which can be possibly implemented for making compact, transformerless 220V to 110V converter circuits.

The proposed homemade converters can be customized and dimensioned as per the gadget size so that these may be inserted and accommodated right inside the particular gadget. This feature helps to get rid of the big and bulky converters and helps to keep away from the unnecessary mess.


All these circuit diagram have been developed by me, let's learn how they can be constructed at home and how the circuit functions:

Using Only Series Diodes

The first circuit will convert a 220V AC input to any desired output level from 100V to 220V, however the output will be a DC, so this circuit may be used for operating a foreign equipment which might be employing an AC/DC SMPS input power supply stage. The converter will not work with equipment incorporating a transformer at its input.

CAUTION: Diodes will dissipate a lot of heat so make sure they are mounted on a suitable heatsink.

As we all know that a normal diode, like a 1N4007 drops 0.6 to 0.7 volts across it, when a DC is applied, means that many diodes put in series would drop the relevant amount of voltage across them.

In the the proposed design, in all 190 1N4007 diodes have been used and put in series for acquiring the desired level of voltage conversion.

If we multiply 190 by 0.6, it gives around 114, so that's pretty close to the required mark of 110V.

However since these diodes require an input DC, four more diodes are wired up as a bridge network for the initially required 220V DC to the circuit.

The maximum current that can be drawn from this converter is not more than 300 mA, or around 30 watts.

Using a Triac/Diac Circuit

The next option presented here has not been tested by me, but looks good to me, however many will find the concept dangerous and very undesirable.

I designed the following converter circuit only after doing a thorough research regarding the involved issues and have confirmed it to be safe.

The circuit is based on the regular light dimmer switch circuit principle, where the input phase is chopped at the particular voltage marks of the rising AC sine wave. Thus the circuit can be used for setting the input voltage at the required 100 V level.

The pot shown in the circuit should be adjusted for obtaining the required 110V at the output terminals.

A 100uF / 400V capacitor can be seen introduced in series with the load for extra safety.

Alternatively a simpler version of the circuit can be made, where the main high triac is operated via a cheap light dimmer switch for the intended results.

Using Capacitive Power Supply

The following image suggests how a simple high value capacitor can be used for achieving the intended 220V to 110V output. It is basically a triac crowbar circuit where the triac shunts the extra 110V to ground allowing only 110V to come out across the output side:

Using an Autotransformer Concept

The last circuit in the order is perhaps the safest from the above because it uses the conventional concept of transfering power through magnetic induction, or in other words here we employ the age old autotransformer concept for making the desired 110V converter.

However here we have the freedom of designing the core of the transformer such that it can be stufed inside the particular gadget enclosure which needs to be operated from this converter. There will be always some space in gadgets like an amplifier or other simlar systems, which allows us to measure the free spave inside the gadget and customize the core design.

I have shown the use of ordinary steel plates here as the core material which are stacked together and bolted across two of the sets.

The bolting of the two sets of lamination provides some sort of looping effect, generally required for efficient magnetic induction across the core. The winding a single long winding from start to end, as shown in the figure. The center tap from the winding will provide the required approximate 110 V AC output.

Using Triac with Transistors

The next circuit has been taken from an old elektor electronic magazine which describes a neat little circuit for converting 220V mains input to 110V AC. Let's learn more about the circuit details.

Circuit Operation

The shown circuit diagram of a transformerless 220v to 110v converter utilizes a triac and a thyristor arrangement for making the circuit successfully work as a 220v to 110v converter.

The right end of the circuit consists of  a triac switching configuration where the triac becomes the main switching element.

The resistors and the capacitors around the triac is kept for presenting perfect driving parameters to the triac.

The left section of the diagram shows another switching circuit which is used to control the switching of the right hand side triac and consequently the load.

The transistors at the extreme right of the diagram are simply there to trigger the SCR Th1 at the right moment.

The supply to the entire circuit is applied across the terminals K1, via the load RL1 which is in fact a 110V specified load.

Initially the half wave DC derived through the bridge network compels the triac to conduct the full 220V across the load.

However in the course, the bridge starts getting activated causing an appropriate level of voltage to reach the right hand section of the configuration.

The DC thus generated instantly activates the transistors which in turn activates the SCR Th1.

This causes short circuiting of the bridge output, choking the entire trigger voltage to the triac, which finally ceases to conduct, switching off itself and the entire circuit.

The above situation reverts and restores the original state of the circuit and initiates a fresh cycle and the system repeats, resulting in a controlled voltage across the load and itself.

The transistors configuration components are so selected that the triac is never allowed to reach above the 110V mark thus keeping the load voltage well within the intended limits.

The shown "REMOTE" points must be kept joined normally.

The circuit is recommended for operating resistive loads only, rated at 110V, below 200 watts.

Circuit Diagram


About the Author

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials. If you have any circuit related query, you may interact through comments, I'll be most happy to help!

29 thoughts on “How to Make a 220V to 110V Converter Circuit”

  1. Hey Swagatam

    I have built the this converter using the capacitve power supply in PSPICE. But it is not providing 110V RMS at the output. What changes I need to make in this circuit?

    Best Regards

  2. Hello, I recently moved to US from Europe. My beard trimmer's charger is AC 220v-240v 50/60Hz 3w input and output is AC-3v 100mA.
    Is there a way I can make it work on 110v input without changing the output?

    • If the charger is a SMPS type then you can connect it with 110V without any issues, because SMPS adapters are rated to work from 100V to 285v.

  3. i have 100v 680watt vertical portable airconditioner which i am running on canadian made hammond autotransformer220/115v 750va.
    a.c is rated at 6.8amp and transformer is of 6.2amp which heats up enormously within an hour of operation. can you provide a simple circuit to convert 220v to 110v with better efficiency at that kind of load.

    a.c: hafeezcentre.pk/ads_images/1293791840_su57/hc134658675884.jpg
    transf: canada.newark.com/hammond/175e-na/step-down-auto-transformer/dp/50H6429

    • using a conventional iron core transformer is the safest and the most efficient way of achieving the conversion……your trafo might be getting hot due to lower current specs….upgrade the winding with thicker wire and you will find it much cooler

      the other efficient and compact method is through an SMPS design which can be hugely complicated..

  4. Hi, I have been able to convert 220 to 110 volts very easily and in safe way. I got a bulky Transformer from OLD offline UPS. I connected one AC wire to First common input Tap and second AC wire to Second last Input Tap. Now Use multimeter to probe the AC voltage on different pair of input taps to get desired Voltage (110 or around). I'm using it for Xbox One brought from USA

    • yes using a transformer or an auto-transformer is the traditional method and the safest way of implementing the conversion…..today SMPS concept is also effectively and much safely used for the same purpose

  5. I don't know if anyone even reads this anymore, but I have a MIG Welder. It was made for 220V. The seller from China put a 110V to 24V transformer to run the PCB. If I take that out & put a 220v to 24v transformer in, would that work. The rest of the circuit is for 230v. I've tried contacting them, but they just give me the run around. II know basic electronics & how to wire 220v. I'm just not completely sure it will work. Thanks ahead of time

  6. Hai sir,
    By using only diodes converting 230 vac to 110 vdc is it practically working? Is there any heating problems?

    • Hi sasi, it'll work properly for smaller loads such as LEDs, CFLs etc but not for bigger loads…but this circuit might involve high risks of electric shock and fire.

  7. Hi Swagatham,
    How many Amps solar charge control I have to use for a 500w solar panel system. System config. is 12V – 220V. And also do you have any circuit for making a Solar Charge control ?


    • Hi Padma,

      The charge controller specs will depend on the load wattage that you intend to use at the output, if you can specify it, then I can suggest.

      I have plenty of these circuits posted in this blog…

    • I am using 2X150AH Battery with 1800W Inverter. Can I charge the battery with 500W Solar Panel ?? My usage is always below 1000W. For an emergency purpose I am using the 1800W Inverter.

    • according to me a 500 watt panel would be just sufficient for charging a 300ah battery provided the panel is correctly optimized throughout the day.

    • Thank you Mr Majumdar. I want to the solar power only at the time of night and maximum usage is 2000 watt hour. Thats why I considered a 500 watts solar panel. And also in future If I want more power I can add some more panels. Am I right ? So please advise me, how many amps charge control I want to use with a 500 w Solar Panel.


  8. Hi Swagatham,
    How to change a 110V-12V Inverter to a 220V-12V ?
    Have any circuit for that ? Or, is it possible to change the winding of the transformer to change to 220V ?

Leave a Comment