• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Health related Projects / Ultrasonic Hand Sanitizer Circuit

Ultrasonic Hand Sanitizer Circuit

Last Updated on October 4, 2020 by Swagatam 3 Comments

The ultrasonic hand sanitizer circuit detects the presence of human hand through reflected ultrasonic waves, and triggers a relay solenoid pump momentarily for dispensing the sanitizing liquid on the hands of the user.

Table of Contents
  • Using HC-SR04
  • Interfacing HC-SR04 with Arduino
  • Operational Details
  • Program Code

The project uses the popular HC-SR04 ultrasonic sensor module for the required sensing function.

Using HC-SR04

The HC-SR04 ultrasonic sensor module is built usng a couple of specialized ultrasonic transducers rated to work and respond at a frequency of around 40 kHz.

HC SR04 Ultrasonic Sensor

The module has 4 pinouts for configuring into the intended driver circuit.

The supply pinouts are indicated with Vcc and Gnd pins. Where Vcc is the positive 5V input for the module, and the Gnd is supposed to be connected with the negative line of the input power supply.

The trigger pin works with a 10 us pulse which activates the two transducers for transmitting and receiving the reflected ultrasonic wave.

When a series of reflected signals is detected, the "Echo" pin becomes high for initiating the external relay or the solenoid or any preferred load.

Interfacing HC-SR04 with Arduino

In order to process the HC-SR04 module, and enable it to work as a precision ultrasonic proximity detector, we need a microcontroller unit such as an Arduino for the task.

When appropriately programmed with the code as given below, the Arduino becomes compatible with the HC-SR04, for the intended hand proximity detection and activation of sanitizer dispensing mechanism.

The interfacing wiring diagram of the Arduino with HC-SR04 and the relay stage can be seen in the following diagram:

hand sanitizer circuit compressed

Operational Details

The operational procedure of this ultrasonic hand sanitizer circuit is simple, and can be understood with the following points:

The Arduino provides the 10 us activation pulse to the HC-SR04 modules trigger pulse, which enables the module to send and receive the reflected pulse train from the target, which is the hand of the user.

This reflected data is sent to the rduino from the Echo pin of the HC-SR04 module.

The Arduino process the signal and enables stable DC output at pin7 of the board, which is connected with the relay driver stage via a 10k resistor and a 100uF capacitor.

The pin#7 of Arduino is supposed to stay high as long as the HC-SR04 modules continues to detect the users hand within the set proximity.

This mean the re;ay will also stay switched ON during this period, which we don't want.

To make sure that the relay and the attachwd dispensing mechnaism or pump is actated only for a few seconds, a capacitor is placed in series with the base of the BC547.

When pin#7 becomes high due to the presence of a human hand, the BC547 conducts only for so long as its base 100uF is fully charged, which happens within a couple of seconds.

Once the 100uF is fully charged, the BC547 base is inhibited from the base drive, and it stops conducting, switching OFF the relay and disabling the attached hand sanitizer dispensing mechanism.

When the hand is removed, the HC-SR04 stops sending the Echo signal to the Arduino, which flips its pin#7 to logic zero.

At this point, the 100uF base capacitor starts getting discharged via the Arduino pin#7 and the right side 10k ground resistor.

Program Code

The entire program code for the above discussed ultrasonic hand sanitizer circuit using HC-SR04 and Arduino is given below:


const int trigger = A1;
const int echo = A2;
int vcc = A0;
int gnd = A3;
int OP = 7;
long Time;
float distanceCM;
float distance = 15;  // set threshold distance in cm
float resultCM;
void setup()
{
pinMode(OP,OUTPUT);
pinMode(trigger,OUTPUT);
pinMode(echo,INPUT);
pinMode(vcc,OUTPUT);
pinMode(gnd,OUTPUT);
}
void loop()
{
digitalWrite(vcc,HIGH);
digitalWrite(gnd,LOW);
digitalWrite(trigger,LOW);
delay(1);
digitalWrite(trigger,HIGH);
delayMicroseconds(10);
digitalWrite(trigger,LOW);
Time=pulseIn(echo,HIGH);
distanceCM=Time*0.034;
resultCM=distanceCM/2;
if(resultCM<=distance)
{
digitalWrite(OP,HIGH);
delay(4000);
}
if(resultCM>=distance)
{
digitalWrite(OP,LOW);
}
delay(10);
}

Warning: The proposed ultrasonic hand sanitizer circuit has not been tested practically by the author. The idea was inspired from this article, and modified appropriately for enabling the required momentary ON/OFF function for the dispenser pump, or the solenoid.

You'll also like:

  • 1.  Red LED LightStim Circuit for Removing Facial Wrinkles
  • 2.  Automatic Hand Sanitizer Circuit – Fully Contactless
  • 3.  Patient Drip Empty Warning Indicator Circuit
  • 4.  Effects of Electromagnetic Fields (EMF) on Your Health
  • 5.  4 Universal Electronic Thermometer Circuits
  • 6.  Room Air Ionizer Circuit – For Pollution Free Living

About Swagatam

I am an electronics engineer with over 15 years of hands-on experience. I am passionate about inventing, designing electronic circuits and PCBs, and helping hobbyists bring their projects to life. That is why I founded homemade-circuits.com, a website where I share innovative circuit ideas and tutorials. Have a circuit related question? Leave a comment.... I guarantee a reply!

Previous Post: « Touch Alarm Circuit
Next Post: Match Transistor Pairs Quickly using this Circuit »

Reader Interactions

Comments

  1. prarthene says

    November 16, 2020 at 7:33 am

    I tried this, can anyone guide me circuit diagram connect ultrasonic sensor,relay,
    microcontroller.

    Reply
  2. Belbrook, Mont Vert says

    October 5, 2020 at 5:42 pm

    Dear Swagatam,
    Greetings of the day.
    Is it possible to design circuit which shall switch on the power supply say SMPS or Voltage Stabiliser only when the load say R.O Filter ( to be switching on depending upon its water level if full or lesser) or Fridge cycle swicthes on ( depending upon the T ). My purpose is if this kind of circuit design is possible then it shall conserve or save substantial power otherwise the SMPS/Stabiliser always remains in On position immaterial whether load is on or not.

    Reply
    • Swagatam says

      October 6, 2020 at 2:00 pm

      Hello Belbrook, yes that seems possible, I’ll try to design it and post it. But you should have asked this question under an SMPS or power supply artcile, your question is not related to hand sanitizer topic.

      Reply

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Subscribe to New Circuit Ideas

Categories

  • Arduino Projects (87)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (83)
  • Datasheets and Components (104)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (14)
  • Inverter Circuits (87)
  • Lamps and Lights (142)
  • Meters and Testers (69)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (27)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (101)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (37)
  • Water Controller (36)

Calculators

  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Filter Capacitor Calculator
  • Buck Converter Calculator
  • Boost Converter Calculator
  • Solar Panel, Inverter, Battery Calculator
  • Wire Current Calculator
  • SMPS Transformer Calculator
  • IC SG3525, SG3524 Calculator
  • Inverter LC Filter Calculator

People Also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Recent Comments

  • Swagatam on Anti Spy RF Detector Circuit – Wireless Bug Detector
  • Swagatam on Buck Converter Calculator
  • Christian on Anti Spy RF Detector Circuit – Wireless Bug Detector
  • Swagatam on Best 3 MPPT Solar Charge Controller Circuits for Efficient Battery Charging
  • Dan on Buck Converter Calculator

Company

  • Privacy Policy
  • Cookie Policy
  • About Me
  • Contact
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • © 2025 · Swagatam Innovations