• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Inverter Circuits / Transformerless UPS Circuit for Computers (CPU)

DIY Circuits | Learn Basics | Arduino Coding




Transformerless UPS Circuit for Computers (CPU)

Last Updated on March 13, 2019 by Swagatam 8 Comments

In this post I have explained how to build a simple UPS circuit for backing up computers or PCs during sudden power failures or brownouts.

Introduction

Normally when we talk about uninterruptible power supplies (UPS) we imagine large inverter units with complex features, where it imperatively needs to be a pure sine wave type. Such inverters occupy enormous spaces, require bigger batteries and are immensely expensive.

A little innovative thinking shows that the above cumbersome design can be replaced by just batteries and a small circuit for implementing all the necessary actions of an efficient compact transformerless UPS circuit.

However the design also a few downsides. It is specifically intended for CPU type computers only and cannot be used for other applications.

The installations procedures are complicated and time consuming and requires expertise in the field of electronics as well as computers.

Having said these, once installed the unit will provide some very useful services for a very long perid of time. Moreover the efficiency of the system will be far better than the conventional UPS systems.

Looking at the circuit we see that its all about switching the motherboard of the CPU with a set of matched outputs from a battery source which exactly corresponds to the voltages that's obtained from the power supply of the CPU.

Using the Versatile LM338 ICs

The circuit is made up of two ICs LM338, which are set for producing exact 3.3V and 5V outputs which are appropriately bifurcated into many outputs via diodes.

The 12V outputs are taken directly from the battery, while a minus 12V output is derived by employing an extra battery.

One battery feds the LM338 circuit while the other battery generates the required -12V output for the CPU.

The switching action is implemented by a relay when power fails.

The relay simply selects the appropriate grounds while doing the reverting actions.

As long as power is available from the mains, the relay keeps the backup ground disconnected from the CPU ground, and keeps the power supply ground connected to the CPU ground via  the N/C contacts.

The relay is powered by an external AC mains power supply source, which is also used for charging the batteries. Actually it can be an automatic battery charger unit, attached to the system for the required actions.

The moment AC fails, the relay disconnects the power supply ground from the CPU and connects the back up circuit ground with the CPU ground, so that the CPU now gets the required back up from the relevant outputs of the transformerless inverter circuit.

The reverting actions is done within a few ms, providing an interruptible power during power failures or brownouts.

All the outputs shown in the circuit should be carefully soldered to the relevant wires of the power supply by slightly stripping the wire insulation and then taping them. The voltages must be thoroughly confirmed before integrating the two systems together.

 

 

Part List

IC1, IC2 = LM338
R1, R2 = 240 Ohms,
P1, P2 = 4K7 presets
All diodes are 6 amp rated
Relay = 24V, SPDT
Battery as shown

 

You'll also like:

  • 1500 watt inverter1500 watt PWM Sinewave Inverter Circuit
  • Maintenance Tips for Lead Acid Battery
  • 2000VAInverterCircuitHomemade 2000 VA Power Inverter Circuit
  • convert h bridge to sine wave h bridge basic layoutConvert any H-Bridge Inverter to Sine Wave H-bridge Inverter

Filed Under: Inverter Circuits Tagged With: Computers, CPU, Transformerless, UPS

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « How to use Eagle CAD
Next Post: Make This 1KVA (1000 watts) Pure Sine Wave Inverter Circuit »

Reader Interactions

Comments

Απόστολος Παπαστεργίου says:
August 8, 2016 at 5:41 pm

The above circuit Transformerless UPS Circuit for Computers (CPU)

Reply
Swagatam says:
August 18, 2016 at 11:08 am

sorry I do not have much idea regarding computer internal wiring details…

Reply
Απόστολος Παπαστεργίου says:
August 17, 2016 at 6:57 pm

can you tell me how to connect the purple +5VSB and gray POWER OK .

Reply
Praveen says:
March 29, 2018 at 5:28 pm

+5VSB and gray POWER OK is standby voltage used to trigger and switch on for SMPS ATX

Reply
Swagatam says:
March 29, 2018 at 6:00 pm

sorry, I am not sure about it at the moment, I don’t remember, because the circuit was designed by me 3 years ago

Reply
Swagatam says:
August 9, 2016 at 5:42 am

yes it can be used after doing the recommended wiring correctly

Reply
apostolos says:
August 5, 2016 at 8:00 am

helo mr.Swagatan majumbar i have try to make the circouit Transformerless UPS Circuit for Computers (CPU)
and i have some problems can you help me please
when the supply returns and disconnect the battery the PC stops.

Reply
Swagatam says:
August 6, 2016 at 2:32 am

hello apostolos, which circuit diagram are you referring to?

Reply

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

circuit simulator image



Subscribe to get New Circuits in your Email



Categories

  • Arduino Projects (93)
  • Audio and Amplifier Projects (133)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (85)
  • Datasheets and Components (109)
  • Electronics Theory (149)
  • Energy from Magnets (27)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (20)
  • Health related Projects (27)
  • Home Electrical Circuits (13)
  • Indicator Circuits (16)
  • Inverter Circuits (95)
  • Lamps and Lights (159)
  • Meters and Testers (71)
  • Mini Projects (28)
  • Motor Controller (68)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (91)
  • Remote Control Circuits (50)
  • Renewable Energy (12)
  • Security and Alarm (64)
  • Sensors and Detectors (106)
  • SMPS and Converters (34)
  • Solar Controller Circuits (60)
  • Temperature Controllers (43)
  • Timer and Delay Relay (49)
  • Voltage Control and Protection (42)
  • Water Controller (36)
  • Wireless Circuits (30)





Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap



People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Stack Exchange
  • Linkedin



Recent Comments

  • Swagatam on 9 Simple Solar Battery Charger Circuits
  • Gagana on 9 Simple Solar Battery Charger Circuits
  • Swagatam on Arduino 2-Step Programmable Timer Circuit
  • Swagatam on Simple Buck-Boost Converter Circuits Explained
  • Swagatam on IC IR2111 H-Bridge MOSFET, IGBT Driver IC: Full Datasheet, Circuit Diagram

© 2026 · Swagatam Innovations