• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Inverter Circuits / Transformerless UPS Circuit for Computers (CPU)

Transformerless UPS Circuit for Computers (CPU)

Last Updated on March 13, 2019 by Swagatam 8 Comments

In this post I have explained how to build a simple UPS circuit for backing up computers or PCs during sudden power failures or brownouts.

Table of Contents
  • Introduction
  • Using the Versatile LM338 ICs

Introduction

Normally when we talk about uninterruptible power supplies (UPS) we imagine large inverter units with complex features, where it imperatively needs to be a pure sine wave type. Such inverters occupy enormous spaces, require bigger batteries and are immensely expensive.

A little innovative thinking shows that the above cumbersome design can be replaced by just batteries and a small circuit for implementing all the necessary actions of an efficient compact transformerless UPS circuit.

However the design also a few downsides. It is specifically intended for CPU type computers only and cannot be used for other applications.

The installations procedures are complicated and time consuming and requires expertise in the field of electronics as well as computers.

Having said these, once installed the unit will provide some very useful services for a very long perid of time. Moreover the efficiency of the system will be far better than the conventional UPS systems.

Looking at the circuit we see that its all about switching the motherboard of the CPU with a set of matched outputs from a battery source which exactly corresponds to the voltages that's obtained from the power supply of the CPU.

Using the Versatile LM338 ICs

The circuit is made up of two ICs LM338, which are set for producing exact 3.3V and 5V outputs which are appropriately bifurcated into many outputs via diodes.

The 12V outputs are taken directly from the battery, while a minus 12V output is derived by employing an extra battery.

One battery feds the LM338 circuit while the other battery generates the required -12V output for the CPU.

The switching action is implemented by a relay when power fails.

The relay simply selects the appropriate grounds while doing the reverting actions.

As long as power is available from the mains, the relay keeps the backup ground disconnected from the CPU ground, and keeps the power supply ground connected to the CPU ground via  the N/C contacts.

The relay is powered by an external AC mains power supply source, which is also used for charging the batteries. Actually it can be an automatic battery charger unit, attached to the system for the required actions.

The moment AC fails, the relay disconnects the power supply ground from the CPU and connects the back up circuit ground with the CPU ground, so that the CPU now gets the required back up from the relevant outputs of the transformerless inverter circuit.

The reverting actions is done within a few ms, providing an interruptible power during power failures or brownouts.

All the outputs shown in the circuit should be carefully soldered to the relevant wires of the power supply by slightly stripping the wire insulation and then taping them. The voltages must be thoroughly confirmed before integrating the two systems together.

transformerlessupscircuitforcomputers

 

 

Part List

IC1, IC2 = LM338
R1, R2 = 240 Ohms,
P1, P2 = 4K7 presets
All diodes are 6 amp rated
Relay = 24V, SPDT
Battery as shown

 

You'll also like:

  • 1.  Inverter Voltage Drop Issue – How to Solve
  • 2.  Low Battery and Overload Protection Circuit for Inverters
  • 3.  PWM Inverter Using IC TL494 Circuit
  • 4.  Convert your Computer UPS to Home UPS
  • 5.  Automatic Micro UPS Circuit
  • 6.  How to Design an Inverter – Theory and Tutorial

About Swagatam

I am an electronics engineer with over 15 years of hands-on experience. I am passionate about inventing, designing electronic circuits and PCBs, and helping hobbyists bring their projects to life. That is why I founded homemade-circuits.com, a website where I share innovative circuit ideas and tutorials. Have a circuit related question? Leave a comment.... I guarantee a reply!

Previous Post: « How to use Eagle CAD
Next Post: Make This 1KVA (1000 watts) Pure Sine Wave Inverter Circuit »

Reader Interactions

Comments

  1. Απόστολος Παπαστεργίου says

    August 8, 2016 at 5:41 pm

    The above circuit Transformerless UPS Circuit for Computers (CPU)

    Reply
    • Swagatam says

      August 9, 2016 at 5:42 am

      yes it can be used after doing the recommended wiring correctly

      Reply
    • Απόστολος Παπαστεργίου says

      August 17, 2016 at 6:57 pm

      can you tell me how to connect the purple +5VSB and gray POWER OK .

      Reply
      • Praveen says

        March 29, 2018 at 5:28 pm

        +5VSB and gray POWER OK is standby voltage used to trigger and switch on for SMPS ATX

        Reply
        • Swagatam says

          March 29, 2018 at 6:00 pm

          sorry, I am not sure about it at the moment, I don’t remember, because the circuit was designed by me 3 years ago

          Reply
    • Swagatam says

      August 18, 2016 at 11:08 am

      sorry I do not have much idea regarding computer internal wiring details…

      Reply
  2. apostolos says

    August 5, 2016 at 8:00 am

    helo mr.Swagatan majumbar i have try to make the circouit Transformerless UPS Circuit for Computers (CPU)
    and i have some problems can you help me please
    when the supply returns and disconnect the battery the PC stops.

    Reply
    • Swagatam says

      August 6, 2016 at 2:32 am

      hello apostolos, which circuit diagram are you referring to?

      Reply

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Subscribe to New Circuit Ideas

Categories

  • Arduino Projects (87)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (83)
  • Datasheets and Components (104)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (14)
  • Inverter Circuits (87)
  • Lamps and Lights (142)
  • Meters and Testers (69)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (27)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (101)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (37)
  • Water Controller (36)

Calculators

  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Filter Capacitor Calculator
  • Buck Converter Calculator
  • Boost Converter Calculator
  • Solar Panel, Inverter, Battery Calculator
  • Wire Current Calculator
  • SMPS Transformer Calculator
  • IC SG3525, SG3524 Calculator
  • Inverter LC Filter Calculator

People Also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Recent Comments

  • Swagatam on Real MPPT Solar Charger Circuit Using Arduino, LCD, and Manual/Auto Switch
  • Obaidullah Khan on Real MPPT Solar Charger Circuit Using Arduino, LCD, and Manual/Auto Switch
  • Swagatam on 2 Compact 12V 2 Amp SMPS Circuit for LED Driver
  • Alan Bishop on AC Motor Speed Controller Circuits using Back EMF
  • Swagatam on Real MPPT Solar Charger Circuit Using Arduino, LCD, and Manual/Auto Switch

Company

  • Privacy Policy
  • Cookie Policy
  • About Me
  • Contact
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • © 2025 · Swagatam Innovations