• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Home Electrical Circuits / Closed Loop AC Motor Speed Controller using Back EMF

Closed Loop AC Motor Speed Controller using Back EMF

Last Updated on August 3, 2020 by Swagatam 37 Comments

The article presented here explains a very simple closed loop AC motor speed controller circuit that may be used for controlling single phase AC motor speeds.

The circuit is very cheap and uses ordinary electronic components for the required implementations. The main feature of the circuit is that it’s a closed loop type, that means the speed or the torque of the motor can never get affected by the load or the speed of the motor in this circuit, on the contrary the torque is indirectly proportional to the magnitude of the speed.

Circuit Operation:

Referring the circuit diagram of the proposed single phase closed loop AC motor controller, the involved operations may be understood through the following points:

For the positive half cycles of the input AC, the capacitor C2 is charged through the resistor R1 and the diode D1.

AC 220 V torque compensated motor speed controller circuit
caution electricity can be dangerous

The charging of C2 persists until the voltage across this capacitor becomes equivalent to the simulating zener voltage of the configuration.

The circuit wired around transistor T1 effectively simulates the operation of a zener diode.

The inclusion of the pot P1 makes it possible to adjust the voltage of this “zener diode”. Precisely speaking, the voltage developed across T1 is literally determined by the ratio between resistors R3 and R2 + P1.

The voltage across the resistor R4 is always maintained equal to the 0.6 volts that’s equal to the required conducting voltage of T1’s base emitter voltage.

Therefore it means that the above explained zener voltage should be equal to the value that may be acquired by solving the expression:

(P1 + R2 + R3 / R3) × 0.6

Parts List for the above closed loop AC motor speed controller circuit

  • R1 = 39K,
  • R2 = 12K,
  • R3 = 22K,
  • R4 = 68K,
  • P1 = 220K,
  • All diodes = 1N4007,
  • C1 = 0.1/400V,
  • C2 = 100uF/35V,
  • T1 = BC547B,
  • SCR = C106
  • L1 = 30 turns of 25 SWG wire over a 3mm ferrite rod or 40 uH/5 watt

How the Load is Positioned for a Special Reason

A careful investigation reveals that the motor or the load is not introduced at the usual position; rather it’s wired up just after the SCR, at its cathode.

This causes an interesting feature to be introduced with this circuit.

The above special position of the motor within the circuit makes the firing time of the SCR dependant on the potential difference between the back EMF of the motor and the “zener voltage” of the circuit.

That simply means that the more the motor is loaded, the quicker the SCR fires.

The procedure quite simulate a closed loop type of functioning where the feedback s received in the form of back EMF generated by the motor itself.

However the circuit is associated with a slight drawback. The adoption of an SCR means the circuit can handle only 180 degrees of phase control and the motor cannot be controlled throughout the speed range but only for 50% of it.

Another disadvantage associated due to the inexpensive nature of the circuit is that the motor tends to produce hiccups at lower speeds, however as the speed is increased this issue completely disappears.

The Function of L1 and C1

L1 and C1 are included for checking the high frequency RFs generated due to the rapid phase chopping by the SCR.

Need less to say the device (SCR) must be mounted on a suitable heatsink for optimal results.

Back EMF Drill Speed Controller Circuit

This circuit is mainly used to control the steady speed of smaller series wound motors, as found in several electric hand drills, etc. The torque and the speed is controlled by P1 potentiometer. This potentiometer configuration specifies how minutely the triac could be triggered.

When the speed of the motor drops just under the preset value (with load connected), then the motor 's back EMF decreases. As a result, voltage around through R1, P1, and C5 rises so that the triac is activated earlier and motor speed tends to increase. A certain proportion of speed stability is achieved in this manner.

You'll also like:

  • 1.  How to Build a Simple Cloth Dryer for Rainy Season
  • 2.  High Current Motor Control Circuit using Arduino
  • 3.  Simple Thermostat Circuit Using Transistors
  • 4.  Simple Gate Open/Close Controller Circuit
  • 5.  Home EMF Radiation Protector Neutralizer Circuit
  • 6.  Make this Electric Scooter/Rickshaw Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
37 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz