• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Inverter Circuits / Transformerless UPS Circuit for Computers (CPU)

Transformerless UPS Circuit for Computers (CPU)

Last Updated on March 13, 2019 by Swagatam 8 Comments

caution electricity can be dangerous

In this post we discuss how to build a simple UPS circuit for backing up computers or PCs during sudden power failures or brownouts.

Introduction

Normally when we talk about uninterruptible power supplies (UPS) we imagine large inverter units with complex features, where it imperatively needs to be a pure sine wave type. Such inverters occupy enormous spaces, require bigger batteries and are immensely expensive.

A little innovative thinking shows that the above cumbersome design can be replaced by just batteries and a small circuit for implementing all the necessary actions of an efficient compact transformerless UPS circuit.

However the design also a few downsides. It is specifically intended for CPU type computers only and cannot be used for other applications.

The installations procedures are complicated and time consuming and requires expertise in the field of electronics as well as computers.

Having said these, once installed the unit will provide some very useful services for a very long perid of time. Moreover the efficiency of the system will be far better than the conventional UPS systems.

Looking at the circuit we see that its all about switching the motherboard of the CPU with a set of matched outputs from a battery source which exactly corresponds to the voltages that's obtained from the power supply of the CPU.

Using the Versatile LM338 ICs

The circuit is made up of two ICs LM338, which are set for producing exact 3.3V and 5V outputs which are appropriately bifurcated into many outputs via diodes.

The 12V outputs are taken directly from the battery, while a minus 12V output is derived by employing an extra battery.

One battery feds the LM338 circuit while the other battery generates the required -12V output for the CPU.

The switching action is implemented by a relay when power fails.

The relay simply selects the appropriate grounds while doing the reverting actions.

As long as power is available from the mains, the relay keeps the backup ground disconnected from the CPU ground, and keeps the power supply ground connected to the CPU ground via  the N/C contacts.

The relay is powered by an external AC mains power supply source, which is also used for charging the batteries. Actually it can be an automatic battery charger unit, attached to the system for the required actions.

The moment AC fails, the relay disconnects the power supply ground from the CPU and connects the back up circuit ground with the CPU ground, so that the CPU now gets the required back up from the relevant outputs of the transformerless inverter circuit.

The reverting actions is done within a few ms, providing an interruptible power during power failures or brownouts.

All the outputs shown in the circuit should be carefully soldered to the relevant wires of the power supply by slightly stripping the wire insulation and then taping them. The voltages must be thoroughly confirmed before integrating the two systems together.

 

 

Part List

IC1, IC2 = LM338
R1, R2 = 240 Ohms,
P1, P2 = 4K7 presets
All diodes are 6 amp rated
Relay = 24V, SPDT
Battery as shown

 

You'll also like:

  • 1.  How to Build a 100 Watt, Pure Sine Wave Inverter
  • 2.  Simple 3 Phase Inverter Circuit
  • 3.  Homemade 100VA to 1000VA Grid-tie Inverter Circuit
  • 4.  Simple Online UPS Circuit
  • 5.  7 Simple Inverter Circuits you can Build at Home
  • 6.  Convert your Computer UPS to Home UPS

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Reader Interactions

Comments

    Have Questions? Please post your comments below for quick replies! Comments should be related to the above artcile Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Απόστολος Παπαστεργίου says

    August 8, 2016

    The above circuit Transformerless UPS Circuit for Computers (CPU)

    Reply
    • Swagatam says

      August 9, 2016

      yes it can be used after doing the recommended wiring correctly

      Reply
    • Απόστολος Παπαστεργίου says

      August 17, 2016

      can you tell me how to connect the purple +5VSB and gray POWER OK .

      Reply
      • Praveen says

        March 29, 2018

        +5VSB and gray POWER OK is standby voltage used to trigger and switch on for SMPS ATX

        Reply
        • Swagatam says

          March 29, 2018

          sorry, I am not sure about it at the moment, I don’t remember, because the circuit was designed by me 3 years ago

          Reply
    • Swagatam says

      August 18, 2016

      sorry I do not have much idea regarding computer internal wiring details…

      Reply
  2. apostolos says

    August 5, 2016

    helo mr.Swagatan majumbar i have try to make the circouit Transformerless UPS Circuit for Computers (CPU)
    and i have some problems can you help me please
    when the supply returns and disconnect the battery the PC stops.

    Reply
    • Swagatam says

      August 6, 2016

      hello apostolos, which circuit diagram are you referring to?

      Reply

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (120)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations