• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Electronic Components / IRF540N MOSFET Pinout, Datasheet, Application Explained

IRF540N MOSFET Pinout, Datasheet, Application Explained

Last Updated on March 5, 2021 by Swagatam 21 Comments

The IRF540N is an advanced HEXFET N-channel power mosfet, from International Rectifier. The device is extremely versatile with its current, voltage switching capabilities, and thus becomes ideal for numerous electronic applications.

The datasheet and pinout details of the device has been explained in the following article.

Main Features:

  1. Sophisticated, cutting-edge processing technology used.
  2. Extremely low resistance across load path. Flexible dv/dt plot.
  3. Operating temperature tolerance capacity as high as 175 degrees Celsius.
  4. Very fast switching capability.
  5. Fully resistant against avalanche or peak surge currents.

Pinout Image

caution electricity can be dangerous

Maximum tolerable limits of IRF540N are stated as under:

ID = 33 Amps Max at 10V (VGS), It’s the maximum current handling capacity of the device across the drain to the source, via the load, with gate voltage at 10V, at normal temperatures (25 to 35 degrees Cel.)

IDM = 110 Amps Max, It’s the maximum current handling capacity of the device across the drain to the source, via the load, in a pulsed mode (NOT continuous).

PD = 130 Watts Max, The maximum power the FET can dissipate with and infinite (cool) heat sink

VGS = 10 Volts typical +/-20%. It’s the maximum trigger voltage that may be applied across the gate and the source for optimal performance.

V(BR)DSS= 100 volts, It’s the maximum voltage that may be applied across drain to source of the device.

Applications Areas

This device is best suited for high power DC switching applications, such as in high current SMPS power supplies, compact ferrite inverter circuits, iron core inverter circuits, buck and boost converters, power amplifiers, motor sped controllers, robotics etc.

How to Connect IRF540N MOSFET

It’s quite simple, and must be done as explained in the following points:

The source should be preferably connected to the ground or the negative line of the supply.

The drain should be connected to the positive terminal of the supply via the load which needs to be operated by the device.

Finally, the gate which is the trigger lead of the device should be connected to the trigger point of the circuit, this trigger input should be preferably a +5V supply from a CMOS logic source.

If the trigger input is not a logic source make sure the gate is permanently connected to ground via a high value resistor.

When the device is being used for switching inductive loads like a transformer or a motor, a flyback diode should be normally connected across the load, with the cathode of the diode connected to the positive side of the load.

However, the IRF540N has a built in avalanche protective diode, therefore typically an external diode may not be required; it may be incorporated in case you wish to provide extra safety to the device.

Application Circuits

Motor Control: All motor control applications require the power device to be rugged, high current, and high voltage rated, and also with a high speed switching. The IRF540 satisfies all these criteria and becomes perfectly suitable for all DC motor control designs, as depicted below:

Source Follower Switching
PWM Motor Switching

Buck Converter: Buck converter cannot work with devices rated with ordinary voltage, current and switching levels. The IRF540 as we have discussed in the above datasheet and features is equipped adequately to work under moderately high voltage, high current and outstanding switching speeds, which makes it a perfect candidate for all buck boost switching applications.

Power Inverter: IRF540 are rated with massive power which allows it to be ideally used for making power inverters as shown below. The complete code can e found in this artcile.

Zero Drop Solar Switch: Solar panels today are rated massively, and this calls for controller with substantial power handling capacity. The IRF540 become highly suitable for all high power solar controller applications simply due to its impressive power switching capabilities.

Corrections to the above explanations is welcome.

You'll also like:

  • 1.  High Voltage Transistors BUX 86 and BUX 87 – Specifications
  • 2.  IC TDA 7560 Datasheet – 4 x 45W QUAD BRIDGE CAR RADIO AMPLIFIER PLUS HSD
  • 3.  IRF510 Datasheet [100V, 5.6 Amp, N-Channel MOSFET]
  • 4.  LM35 Pinout, Datasheet, Application Circuit
  • 5.  IC 4016 Datasheet, Pinout Function
  • 6.  PIR Sensor Datasheet, Pinout Specifications, Working

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
21 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz