• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Inverter Circuits / How to Calculate Modified Sine Waveform

How to Calculate Modified Sine Waveform

Last Updated on January 23, 2024 by Swagatam 6 Comments

I am sure you might have often wondered how to accomplish the correct way of optimizing and calculating a modified square wave such that it produced almost an identical replication of a sine wave when used in an inverter application.

The calculations discussed in this article will help you to learn the technique through which a modified square wave circuit could be turned into sinewave equivalent. I have explained the procedures.

The first criterion to accomplish this is to match the RMS value of the modified square with the sinewave counterpart in a way that the result replicates the sinusoidal waveform as closely as possible.

What is RMS (Root Mean Square)

We know that the RMS of our home AC sinusoidal waveform voltage is determined by solving the following relationship:

Vpeak = √2 Vrms

Where Vpeak is the maximum limit or the peak limit of the sine waveform cycle, while the mean magnitude of the each cycle of the waveform is shown as the Vrms

The √2 in the formula helps us to find the mean value or the net value of an AC cycle which changes its voltage exponentially with time. Because the sinusoidal voltage value varies with time and is a function of time, it cannot be calculated by employing the basic average formula, instead we depend on the above formula.

Alternatively, AC RMS could be understood as an equivalent to that value of a direct current (DC) which produces an identical average power dissipation when connected across a resistive load.

OK, so now we know the formula for calculating the RMS of a sinewave cycle with reference to its peak voltage value.

This can be applied for evaluating the peak and the RMS for our home 50 Hz AC too. By solving this we get the RMS as 220V and peak as 310V for all 220V based mains AC systems.

Calculating Modified Square Wave RMS and Peak

Now let's see how this relationship could be applied in modified square wave inverters for setting up the right waveform cycles for a 220V system, which would correspond to a 220V AC sinusoidal equivalent.

We already know that the AC RMS is equivalent to the average power of a DC waveform. Which gives us this simple expression:

Vpeak = Vrms

But we also want the peak of the square wave to be at 310V, so it seems the above equation won't hold good and cannot be used for the purpose.

The criteria is to have 310V peak as well as an RMS or average value of 220V for each square wave cycle.

To solve this correctly we take the help of the ON/OFF time of the square waves, or the duty cycle percentage as I have explained below:

Each half cycle of a 50 Hz AC waveform has a time duration of 10 millisecond (ms).

A modified half wave cycle in its most crude form must look like as shown in the following image:

how to calculate modified square wave RMS and peak

We can see that the each cycle begins with a zero or blank gap, then shoots up to 310V peak pulse and again ends with a 0V gap, the process then repeats for other half cycle.

In order to achieve the required 220V RMS we have to calculate and optimize the peak and the zero gap sections or the ON/OFF periods of the cycle such that the average value produces the required 220V.

The grey line represents the 50% period of the cycle, which is 10 ms.

Now we need to find out the proportions of the ON/OFF time which will produce an average of 220V. We do it in this way:

220 / 310 x 100 = 71 % approximately

This shows that the 310V peak in the above modified cycle should occupy 71% of the 10 ms period, while the two zero gaps should be 29% combined, or 14.5% each.

Therefore in a 10 ms length, the first zero section should be 1.4 ms, followed by the 310 V peak for 7 ms, and finally the last zero gap of another 1.4 ms.

Once this is accomplished we can expect the output from the inverter to produce a reasonably good replication of a sine waveform.

modified AC calculations

Despite of all these you may find that the output is not quite an ideal replication of the sine wave, because the discussed modified square wave is in its most basic form or a crude type. If we want the output to match the sine wave with maximum precision, then we have to go for an SPWM approach.

I hope the above discussion might have enlightened you regarding how to calculate and optimize a modified square for replicating sinewave output.

For practical verification, the readers can try applying the above technique to this simple modified inverter circuit.

Here's another classic example of an optimized modified waveform for getting a good sine wave at the secondary of the transformer.

You'll also like:

  • 1.  3 High Power SG3525 Pure Sine wave Inverter Circuits
  • 2.  Make This 1KVA (1000 watts) Pure Sine Wave Inverter Circuit
  • 3.  Homemade 100VA to 1000VA Grid-tie Inverter Circuit
  • 4.  Simple Online UPS Circuit
  • 5.  How to Generate Electricity from Shoe while Walking
  • 6.  How to Make a Simple Solar Inverter Circuit

About Swagatam

I am an electronics engineer with over 15 years of hands-on experience. I am passionate about inventing, designing electronic circuits and PCBs, and helping hobbyists bring their projects to life. That is why I founded homemade-circuits.com, a website where I share innovative circuit ideas and tutorials. Have a circuit related question? Leave a comment.... I guarantee a reply!

Previous Post: « What is beta (β) in BJTs
Next Post: Loud Pistol Sound Simulator Circuit »

Reader Interactions

Comments

  1. Dave Null says

    November 7, 2021 at 1:24 am

    This may help others not wanting to do the math (apologies if it loses formatting when posted). Note that if you don’t care about phase offset, only half as many steps are required.

    2-level Modified Sine
    Step = 45 degrees

    0, 0
    45, Vpk
    90, Vpk
    135, 0
    180, 0
    225, -Vpk
    270, -Vpk
    315, 0

    3-level Modified Sine
    Step = 22.5 degrees

    0.0, 0
    22.5, sqrt(1 / 2) * Vpk
    45.0, sqrt(1 / 2) * Vpk
    67.5, Vpk
    90.0, Vpk
    112.5, sqrt(1 / 2) * Vpk
    135.0, sqrt(1 / 2) * Vpk
    157.5, 0
    180.0, 0
    202.5, -sqrt(1 / 2) * Vpk
    225.0, -sqrt(1 / 2) * Vpk
    247.5, -Vpk
    270.0, -Vpk
    292.5, -sqrt(1 / 2) * Vpk
    315.0, -sqrt(1 / 2) * Vpk
    337.5, 0

    5-level Modified Sine
    Step = 15 degrees

    0, 0
    15, sqrt(1 / 3) * Vpk
    30, sqrt(1 / 3) * Vpk
    45, sqrt(2 / 3) * Vpk
    60, sqrt(2 / 3) * Vpk
    75, Vpk
    90, Vpk
    105, sqrt(2 / 3) * Vpk
    120, sqrt(2 / 3) * Vpk
    135, sqrt(1 / 3) * Vpk
    150, sqrt(1 / 3) * Vpk
    165, 0
    180, 0
    195, -sqrt(1 / 3) * Vpk
    210, -sqrt(1 / 3) * Vpk
    225, -sqrt(2 / 3) * Vpk
    240, -sqrt(2 / 3) * Vpk
    255, -Vpk
    270, -Vpk
    285, -sqrt(2 / 3) * Vpk
    300, -sqrt(2 / 3) * Vpk
    315, -sqrt(1 / 3) * Vpk
    330, -sqrt(1 / 3) * Vpk
    345, 0

    Reply
  2. Dave Null says

    November 1, 2021 at 8:11 am

    If Vpeak is constant for 180 degrees (full interval),
    Vrms = sqrt(Vpeak^2 * 180 / 180) = Vpeak

    If Vpeak drops to 0 for 90 degrees (half the interval),
    Vrms = sqrt(Vpeak^2 * 90 / 180) = Vpeak / sqrt(2)

    So it isnt 29% interval reduction but 50% for equivalent Vrms.

    Reply
  3. cleber de oliveira gonçalves says

    March 17, 2019 at 12:24 am

    gostei muito dos projetos exelentes

    Reply
    • Swagatam says

      March 17, 2019 at 9:21 am

      Que bom que você gostou deles

      Reply
  4. holawaleh says

    January 12, 2019 at 11:33 am

    great work and explanation. thumb up!.
    I want to ask how can I incorporate this into an inverter circuit. I mean to get desired results from MOSFET

    Reply
    • Swagatam says

      January 12, 2019 at 12:02 pm

      Thank you holawaleh,

      you can implement this quite effectively using an IC 555 and IC 4017 based inverter circuit. Since IC 4017 has 10 outputs, we can optimize 5 outputs for one channel and other 5 for the other channel in a center tap based inverter circuit

      From these 5 outputs skip the 1st and the 5th (keep them unconnected), and combine the middle 3 pins through diodes and join the diode ends with the gate of the mosfet. Do this for both the channels. This will quite effectively allow you to accomplish a 310V peak and a 220V RMS sine wave at the transformer output.

      Reply

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Subscribe to New Circuit Ideas

Categories

  • Arduino Projects (87)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (82)
  • Datasheets and Components (102)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (14)
  • Inverter Circuits (87)
  • Lamps and Lights (142)
  • Meters and Testers (69)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (27)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (100)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (37)
  • Water Controller (36)

Calculators

  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Filter Capacitor Calculator
  • Buck Converter Calculator
  • Boost Converter Calculator
  • Solar Panel, Inverter, Battery Calculator
  • Wire Current Calculator
  • SMPS Transformer Calculator
  • IC SG3525, SG3524 Calculator
  • Inverter LC Filter Calculator

People Also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Recent Comments

  • Swagatam on Simple Delay Timer Circuits Explained
  • Swagatam on The Role of Inductor Coil in SMPS
  • Swagatam on 7 Modified Sine Wave Inverter Circuits Explored – 100W to 3kVA
  • Swagatam on 7 Modified Sine Wave Inverter Circuits Explored – 100W to 3kVA
  • Victor on 7 Modified Sine Wave Inverter Circuits Explored – 100W to 3kVA

Company

  • Privacy Policy
  • Cookie Policy
  • About Me
  • Contact
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • © 2025 · Swagatam Innovations