The post explains how to make an electronic stethoscope amplifier circuit for enabling a loud audible reproduction of the heart beats which is being diagnosed. The article also reveals how the same can be applied within a cellphone through a wireless circuit. The idea was requested by Dr. Ankit.
Main Requirements
- I would request you to help me with the following circuit "An Electronic Stethoscope".
- Significance- An ordinary stethoscope is a device used to listen to breathing and heart sounds. A hollow rubber tube is connected at one end to a disk shaped diaphragm (placed over the patient) and other end connected to as Y shape to the ear of listener.
- As breathing and heart sounds create slight vibrations, these make the diaphragm vibrate and then the sound is amplified in the disk and audible through the tube to the other end.
- In hospitals, often there is noise of other equipment hence the weak sounds transmitted by stethoscope are sometimes inaudible and important diagnosis missed by the listener.
The Objective:
- A circuit is requested that picks up sound vibrations from the diaphragm of the stethoscope and convert it to electronic signals that are then amplified and can be heard through a speaker loud enough that connecting to ears is not required and no sound is missed (even by less experienced practitioners).
- The battery utilised may be small lightweight 4.5V or 6V (like ones used in rechargeable led torch) OR through mobile power banks since stethoscope must be portable and easy to carry at the same time avoiding wall socket connections for power supply.
- As an improvement of this circuit - If possible the circuit may derive power through an android phone directly AND again if possible the output signals may be visualized as a graph in the android screen.
- As there is no direct contact with ears, this will also prevent cross infection of ears as sometimes happens when one stethoscope is used by multiple users.

The Design
The sound of a heart beat can be extremely weak and therefore it cannot be heard without a minimum suitable device such as a stethoscope.
A stethoscope is a basic device which relies on picking and transferring the air vibrations through a tube into the ears of the user.
The vibrations are caused by the heart beats on the stethoscope's sensing diaphragm when it is brought at a close proximity to the chest where the heart is situated, and the diaphragm movement sets the air column inside the tube into a correspondingly push-pull vibrating motion
This surely means that even though the air vibration or the sound vibration generated by the heart could be small enough but it's loud enough to be heard without the aid of electrical device, which implies that the sound may be sufficiently strong to be amplified using an audio amplifier, because if a naked ear can hear these minute vibrations so can the amplifier MIC.
Producing Heartbeat in Loudspeaker
In order to reproduce the sound over a loudspeaker, the signal needs to be amplified significantly and also in the course it must be suitably processed to remove any associated disturbances.
The circuit diagram of the proposed electronic stethoscope amplifier is designed using two stages, one consisting of the opamp based tone control circuit, and the integrated proper amplifier stage.
The tone control stage is built around the opamp 741, and with the help of the associated RC networks and the pots. The upper pot controls the low frequency limit, while the lower pot is used to control the upper frequency limit. Both these pots can be appropriately set for achieving the best possible sound clarity.
In addition to the sound processing, the opamp stage also acts like a preamplifier for elevating the very low amplitude of the heart beat pulses to a suitable level for the power amplifier input. This enables the power amplifier to pick the signals at above the required minimum detectable level and amplify it on the loudspeakers optimally.
MIC as the main Sensor
The main sensing stage of this electronic stethoscope circuit is formed by an electret MIC which can be seen configured across the input of the tone control stage via an RC network.
In order to enable the MIC to sense the minute heart beat signals, the mic is enclosed within a rubber pipe with a rubber funnel like mouth opening.
The funnel like opening is supposed to be stuck over the chest of the patient just above the heart area for allowing the MIC to detect the concentrated heart rate sound and convert it into minute proportionately pulsating electrical pulses.
The opamp circuit responds to these signals and processes it appropriately as per the setting of the low pass and the high pass filter pots.
The finalized signal is applied to the input of the power amplifier configured around the TDA2003 amplifier circuit which is capable of generating a strong 10 watts of amplification over a 8 ohm loudspeaker.
The pot between the 741 output and the TDA input determines the volume of sound and can be adjusted for the same.
You May Also Want to Learn the Construction of a Bluetooth Stethoscope Circuit
A Simpler Alternative (using a Wireless FM Transmitter)
In the request we also see the mentioning of a android phone compatible unit, which is difficult to achieve using the above circuit since the minimum operating voltage of this circuit can be over 12V so it cannot be operated easily using a cellphone existing battery
A simpler yet a more advanced method for achieving an electronic stethoscope amplifier functionality with a cellphone is to go wireless.
A small FM transmitter circuit can be used and positioned near the chest of the patient, and the heart pulses can be heard or recorded loud and clear over any cellphone equipped with an FM radio, which is commonly included in all standard cellphone regardless of its sophistication level.
The mic will need to be encapsulated appropriately inside a pipe/funnel kind of enclosure as suggested in the previous discussion, so that other forms of disturbances become undetectable for the MIC.
Once the heart beats are recorded inside the android phone, this can be easily used with a suitable app for converting the same into a graphical format and for enabling a more scientific assessment of the patient heart condition.
The wireless stethoscope amplifier circuit set up can be understood from the following diagram

Parts List
- R1 =1M,
- R2 = 2K2,
- R3 = 470 Ohms,
- R4 = 39K,
- R5 = 470 Ohms,
- R6 = 4k7
- R7 = 270K
- C1 = 0.1 uF,
- C2 = 4.7 uF,
- C3, C6 = 0.001uF,
- C4 = 3.3pF,
- C5 = 10pF,
- C7 = 100uF/16V
- D1----D4 = 1N4007
- L1 = See Text
- T1, T2 = BC547B,
- T3 = BC557B
- TR1 = transformer, 0-9V, 100mA
Feedback from Mr. Jan
I have built this project and it works well as a normal amp, but it is not sensitive enough to pick UP any heartbeats.
Any suggestions as to how I can make this more sensitive? Your assistance will be much appreciated.
Solving the Circuit Query
My Response: The design explained above needs to be correctly optimized in order to get the most favorable results, however in order to enhance the outcome to maximum, a transistorized MIC preamp could be introduced at C5, as illustrated in the following diagram, this should hopefully make the proposed electronic stethoscope circuit extremely sensitive and enable the heartbeat to become loudly audible.

Jan:
Thank you for the update.
I have made the changes and must admit that it is much more sensitive, although I still cannot pick up a heartbeat clearly. I think the problem might be with the microphone.
Question: Are all electret microphones more or less the same or do you get some that are more sensitive?
Analyzing the Circuit Results
Thank you Jan,
Electret Mics are all similar with their specs according to me, they will behave identically unless the device is faulty or accidentally a duplicate low quality piece.
I think you will need to fine-tune the circuit for getting a proper optimal response from the output.For this first you must replace the speaker with a headphone so that the initial low un-optimized sound becomes slightly audible in our ears.
Once you get hold of the sound you can begin adjusting the bass treble pots until the most favorable sound becomes available in the headphones, later on once the audio is perfect the headphones can be replaced back with loudspeakers.
If you find the existing bass treble stage inadequate, you can replace it with the following 10 stage equalizer and get an access to a 10 level optimzation control.
https://homemade-circuits.com/2013/06/10-band-graphic-equalizer-circuit-for.html
Best Regards.
Warning: The concept has not been verified for its accuracy and credibility and the author does not in any manner endorse the use of this circuit for serious heart diagnosing. Consult a qualified medical personal before using the explained circuit practically on a patient.
Search Related Posts for Commenting
Making a Stethescope Amplifier Circuit
Hello Swagatam,
greetings to you,
I some times fix my mechanical watches and would love to hear the beat of the watch Audiobly but unfortunately the beat of the watch is less than 30db, Does the above circuit sound suitable for my application, I have tried couple of circuits using the TBA820M, but sadly does not help.
Thanks & regards
Hello Patrick, yes definitely that’s possible. As long as your ear is able to hear the beats then the MIC will too, and amplify it to the desired levels,
The TBA820 must be preceded by a MIC preamplifier, then the output will be audible.
Thank you Swagatam, I had attached the Preamp circuit to the amp, but the output is very feeble. Hence want to try the above circuit.
No problem Patrick, in that case you can use a higher power rated amplifier such as TDA2003 wit your preamp, or may be even an LM386 amp could be tried with a gain of 200
Yes, you’ll need more amplification (I have four amp stages). Instead of the LM741, you should use a dual opamp like the TL082. My opamps are very tiny… little circuits that can be found on the Amazon and only require 3 or 4 volts.
I put the low pass & high cut filters in between each amp stage. Also this is prone to feedback therefore, earphones are a better choice. Additionally, I put a 2 ohm resistor in series with the output because of the possibility of over-driving the tiny earphones.
thanks for the valuable inputs james, appreciate it.
I made something similar before I ever saw this website. I placed the electret mic in the enlarged steth. tube about 6 inches away from the regular steth. head (called the chest piece). The diaphragm is extremely thin. I can hear S1 & S2 heart sounds in a non-obese person, especially if the head is pressed against the sternum, just slightly to the left. Of course it’s not as loud as the breathing sounds.
Please note: it requires a lot of amplification and you WILL pick up back ground noise.
Thanks for the update, yes the amplification level will need to be extremely high for detecting the heart beats loudly, however the background noise if any can be eliminated by incorporating a variable low pass filter after the MIC as indicated in the above diagrams, which can be adjusted to acquire the most optimal response!
what could be change if i want to send the heart or lung sound audio into a microphone to send through the GSM network in a phone call?
You just have to feed the amplified output signal from the processor to your GSM’s input port, this could be best done perhaps through an optocoupler.
and should we use 9v or more? plzzz reply
you can use 9V or 12V also, preferably a battery
the circuit is a sensitive amplifier and will work if done step wise and correctly….
sir do you try this circuit by yourself ? and is it work correctly ? and plzz upload its video too so it make us easy to understand
sir do you try this last circuit practically by yourself ? and is it work correctly ?
COMMENT BOX IS MOVED AT THE TOP