• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Sensors and Detectors / How to Make a Barcode Security Lock Circuit

How to Make a Barcode Security Lock Circuit

Last Updated on February 3, 2020 by Swagatam 12 Comments

A simple barcode security lock circuit or barcode scanner circuit is explained in the following article using just a handful of ordinary components such as an op amp, an LDR and an laser light.

We all have seen and are familiar with these arrays of thick and thin lines which can be seen printed on almost all types of products, these coded arrangement is commonly known as a bar code.

A barcode strip printed on a particular product identifies quite a few crucial information regarding the product in an encoded form.

How Barcode Scanners Work

Barcode scanners are sophisticated instruments which are used for scanning bar codes for decoding the hidden information of the product for the required purpose.

Normally these devices consist of a laser beam which is thrown across the barcode, the light gets reflected from the white portions of the barcode whereas its absorbed in the black lines of the code.

The above reflected varying light intensities are appropriately captured by a photosensor and translated into a varying analogue frequency output.

The above analogue data is then converted into digital pulses through a circuit stage and these digital pulses are further converted into binary form for feeding into a PC or a software. The software finally decodes the information by recognizing the digital/binary pattern of the fed data.

Making a Barcode Scanner Circuit

A simple homemade barcode scanner is presented in the following discussion which can be used for experimenting and playing with different barcoded strips and for customizing it as a security key lock device.

Referring to the couple of diagrams below, the diagram on the left shows a LED/LDR sensor which may be positioned close to the barcode strip inside an appropriate box enclosure for sensing the barcode specification.

caution electricity can be dangerous

How the Concept Works

When the barcode card is swiped, the laser beam is reflected from across the black/white barcode lines with varying intensities and is received/detected by the LDR through an appropriately drilled aperture, as may be visualized in the left diagram above.

The barcode security lock circuit on the right shows a simple opamp comparator circuit integrated with the LDR sensor for translating the barcode data into a correspondingly varying digital signals

The 10 k preset is subtly set such that the opamp is able to respond even to the minutest difference in light sensed by the LDR.

Thus the varying light intensities from a swiping barcode card is quickly responded by the opamp and is converted into a correspondingly changing rectangular waveform across its pin6.

Since here we are only interested to use the decoded information to uniquely activate a compatible lock and key arrangement, reading only the frequency and the RMS would be sufficient for using the barcode info as a potential security locking/unlocking data.

In the next post we'll learn how to make a barcode decoder circuit or activating a relay mechanism.

Designing a Barcode Activated Security Lock Circuit

So far we learned about a simple barcode sensor circuit, now we'll study how the sensed pulses can be transformed for getting unique sets of high low outputs from the IC 4033 in response to different barcodes patterns. This unique results can be then used for activating a barcode security lock circuit or an alarm.

The idea is based on the fact that the lines of the bar code have different thicknesses and this could be scanned to produce unique time intervals across the entire bar code design.

In the figure below we see the circuit design for creating unique 7 segment outputs in response to the opamp sensor feed.

How it Works

In the proposed barcode security lock circuit, a 4033 IC which is a 7 segment decoder is used with a IC 555 clock generator for generating the unique results in response to the barcode.

Pin4 of the IC 555 is connected with the op amp sensor output which implies that the IC 555 will be active and run the IC 4033 only for the white spaces on the barcode, since the white spaces are supposed to create high logic pulses across the opamp output will keep the IC 555 pin4 reset pin activated during these periods.

And while the IC 555 is clocking, IC 4033 would be busy creating the BCD sequences across its output pins, and across the black lines of the barcode this sequence generation will stay inhibited.

Now in order to get a uniform and consistent outputs from the IC 4033 for individual barcode, the barcode card needs to be swiped using a motor mechanism or a solenoid mechanism with a regulated constant speed and not with hand.

The motor could be operated with a set/reset mechanism such that it moves the entire barcode length in front of the laser/LDR assembly.

The motor switch ON could initiate the opamp circuit which then starts sensing the barcode pulses to transform it into a PWM form.

This PWM is quickly responded by the IC 555/4033 circuit until the entire barcode is read.

As soon as the reading ends the outputs of the 4033 stay latched with a unique set of high and low outputs.

These outputs can be individually configured with relay mechanisms in order to activate an electrical lock, a gate, or any intended security system.

A 4 input NAND gate IC 4012 could be used and configured with any four selected unique outputs of the decoder for activating a security relay.

If 3 high outputs are selected then one of the NAND inputs could be shorted to the positive supply.

You'll also like:

  • 1.  Motorcycle Button Start Locking Circuit
  • 2.  Vehicle Speed Limit Alarm Circuit
  • 3.  Modifying Car Turn Signal Lights, Park-Lights and Side-Marker Lights
  • 4.  Buzzer with Incrementing Beep Rate
  • 5.  Solar Stud Light Circuit 
  • 6.  Differential Temperature Detector/Controller Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

New Posts

  • 220 V Slow Fade Bedside Lamp Circuit
  • Sound Activated Remote Control Circuit
  • High Voltage DC Motor Speed Regulator Circuit
  • High Efficiency Solar Charger Circuits using Switching Regulators
  • Mobile Signal Vibrator Circuit

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
12 Comments
Newest
Oldest
Inline Feedbacks
View all comments


Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (118)
  • Battery Chargers (83)
  • Car and Motorcycle (96)
  • Datasheets (77)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (14)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (30)
  • Home Electrical Circuits (106)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (96)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (67)
  • Mini Projects (152)
  • Motor Controller (68)
  • MPPT (7)
  • Oscillator Circuits (25)
  • PIR (Passive Infrared) (8)
  • Power Electronics (35)
  • Power Supply Circuits (81)
  • Radio Circuits (10)
  • Remote Control (49)
  • Security and Alarm (64)
  • Sensors and Detectors (127)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (62)
  • Timer and Delay Relay (54)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz