• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • 1000+ Circuits
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results
You are here: Home / 4060 IC Circuits / Kiln Temperature Controller Circuit

Kiln Temperature Controller Circuit

Last Updated on July 6, 2019 by Swagatam 2 Comments

A programmable sequential timer along with a triac dimmer is configured for making this kiln temperature controller circuit, further details are explained in the following article.

The idea was requested by Mr. Joe.

220V Kiln Controller with Timer

  1. I'm hoping you have some time to have a crack at a design I'm after.
  2. I've been trying to find a design for a kiln controller on the web to no avail.
  3. The main parameters would be a preheat cycle approx 1 hour, followed by a 3 step ramp up to an end point of 560c.
  4. Having temp displayed via an LCD and possibly a timer set through this would be great.
  5. My kiln element is currently 240v AC and drawing 17 amps.

The Design

The proposed kiln oven temperature controller circuit with timer can be built using the following explained cascaded sequential timers whose timings can be independently adjusted.

Referring to the above circuit design, the design is basically built around three identical IC 4060 timer stages and a standard light dimmer circuit enhanced with a high power triac for supporting the specified 17 amp kiln heater coil.

The entire kiln timer controller circuit can eb understood from the followng points:

The extreme left side IC 4060 timer circuit has all the component details which needs to be exactly replicated for the subsequent cascaded stages as these stages are identical with their componets and working specs. These stages are rigged to produce sequential timing outputs and activating the relevant relays in response to the set individual timings.

When the indicated power switch is pressed, the SCR at extreme left latches and grounds the pin#12 of the IC enabling it to initiate the counting process.

During this period its pin#3 is held at logic low ensuring that the attached BC547 and the relay stay switched OFF.

Also since the pin#12 of the second and the third IC are rendered at the positive supply level, these ICs stay disabled while the first IC is activated and counting.

As soon as the set time delay elapses, pin#3 of the left most IC goes high, activating the concerned relay and also latching the pin#3 high situation via the 1N4148 diode connected with pin#11.

The above activation causes the pin#12 of the second C to get grounded via the BC547 collector, which in turn enables the second IC 4060 now begins counting, and the process is repeated identically activating the second relay after the set elapsed delay.

The third IC and the relay follows the same pattern sequentially.

The relay contacts can be seen connected with 3 series 100k resistors which become the part of the triac dimmer circuit, and the total value of these resistors determine the conduction level of the triac which in turn decide the heat level of the attached heater coil.

Initially while the first IC 4060 is counting, all the three resistor become involved in series allowing the lower preheat process to begin.

When the first relay activates it shorts one of the 100K resistors causing higher conduction through the triac and higher current to flow through the heater, raising the temperature of the kiln proportionately to a higher level, this is repeated by the second relay also, elevating the kiln temperature a little more, ....until the final relay clicks causing the kiln temperature to soar to the required 560 degrees.

If you have any more queries regarding the discussed kiln temperature timer controller circuit, please feel free to jot them in through comments.

Calculating the Timing Components

The following formula can be used for assessing the various time periods for the individual ICs:

f(osc) = 1 / 2.3 x Rt x Ct

2.3 is a constant term which does not need any change.

In order to ensure an accurate output delays, the following condition must be maintained across the selected components:

Rt << R2 and R2 x C2 << Rt x Ct.




Previous: 433 MHz RF 8 Appliances Remote Control Circuit
Next: How to Make TDCS Brain stimulator Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  Induction Heater Circuit Using IGBT (Tested)
  • 2.  Digital Clock Activated Water Level Controller Circuit
  • 3.  Customized Water Flow Controller with Timer Circuit
  • 4.  Heater Controller Circuit Using Push-Buttons
  • 5.  Ultraviolet (UV) Sanitizer Circuit for Disinfecting Home Materials
  • 6.  Simple Adjustable Industrial Timer Circuit

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. Ken says

    I have made a couple of oven/kiln temperature controllers using the Arduino UNO for the temperature regulator, thermocouple and amplifier for temperature sensing and a triac switch as the final power control element. The design is really quite simple and they worked quite nicely. One way to make life difficult for yourself on temperature controllers is to attempt to use voltage control which is very non linear with respect to power and so causes problems with the regulator. A far better approach is to use pulse width modulation with a period of, say, 10 seconds (not the Arduino pwm).
    If this is of any interest to you I could go into it further.

    Reply
    • Swagatam says

      The circuit shown above uses a triac chopper concept, which is also a form of PWM applied to an AC. A triac chopper based heat control for a resistive load is probably the most efficient form of load control, in terms of cost as well as power saving.

      As suggested by you a 10 sec variable pulse can be also used as effectively, no problems with that! But with a triac chopper the switching will be constant and smooth.

      Reply


  3. COMMENT BOX IS MOVED AT THE TOP


Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (92)
  • 741 IC Circuits (18)
  • Amplifiers (49)
  • Arduino Engineering Projects (82)
  • Audio Projects (83)
  • Battery Chargers (75)
  • Car and Motorcycle (87)
  • Datasheets (44)
  • Decorative Lighting (Diwali, Christmas) (31)
  • DIY LED Projects (81)
  • Electronic Components (96)
  • Electronic Devices and Circuit Theory (34)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (17)
  • Heater Controllers (23)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (25)
  • Infrared (IR) (39)
  • Inverter Circuits (94)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (52)
  • Mini Projects (152)
  • Motor Controller (64)
  • MPPT (7)
  • Oscillator Circuits (12)
  • PIR (Passive Infrared) (8)
  • Power Electronics (32)
  • Power Supply Circuits (65)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (55)
  • Sensors and Detectors (115)
  • SG3525 IC (4)
  • Simple Circuits (72)
  • SMPS (30)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (37)
  • Ultrasonic Projects (12)
  • Water Level Controller (45)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2021 · Swagatam Innovations

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok