• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Electronic Components / IC 4047 Datasheet, Pinouts, Application Notes

IC 4047 Datasheet, Pinouts, Application Notes

Last Updated on March 1, 2023 by Swagatam 95 Comments

The IC 4047 is one of those devices which promises an unlimited range of circuit application solutions. The IC is so versatile that on many occasions it easily outsmarts it's close rival, the IC 555, let's study the datasheet and pinout details of this versatile chip.

Main Datasheet and Specifications:

In-built oscillator with variable frequency option through an external RC network.

Complementary push-pull outputs with a separate active clock output, the clock output is actually an extension of the internal oscillator frequency output.

Duty cycle locked to 50% for precision, fail proof operation of the external stages.

The IC 4047 can be configured as a free running astable MV, and also as a monostable MV.

In the astable mode the chip provides the option of integrating external triggering inputs, also called true gating and complement gating modes.

The monostable mode enables positive edge triggering as well as negative edge triggering of the IC.

It further allows retriggerable feature for extending the output timing to the desired calculated level. Meaning after the normal trigger is applied to the IC, more number subsequent triggers can be applied so that the output adds up the timing, generating further delay at the output.

Internal Logic Diagram

IC 4047 internal logic diagram
caution electricity can be dangerous


Pinout Details

The following explanation suggests how the pinouts of the IC 4047 may be configured for implementing the above discussed operating modes:

In the free running astable mode, connect pins 4, 5, 6, 14 to positive or Vdd, connect pins 7, 8, 9, 12 to ground or Vss.

Vdd must be supplied with a recommended 3V to 15V and maximum 18V (absolute).

In gated astable mode connect pins 4, 6, 14 to positive or Vdd, connect pins 7, 8, 9, 12 to ground or Vss, connect pin 5 to the reset pin of the external trigger IC, while output of the external chip to pin 4 of the IC 4047.

For the above modes, the output may be obtained across pin 10, 11 (push-pull) while clocks at pin 13.

In positive trigger monostable mode, connect pins 4, 14 to positive or Vdd, connect pins 5, 6, 7, 9, 12 to ground or Vss, connect pin 8 to the reset pin of the external trigger IC, while output of the external chip to pin 6 of the IC 4047.

For the above modes, the output may be obtained across pin 10, 11.

Fundamental Free Running Astable Mode Circuit Diagram Using IC 4047

IC 4047 pinout hints

As shown in the figure above, the IC 4047 can be used as a free running astable multivibrator or oscillator by configuring the chip in the above suggested method.

Here R1, P1 and C1 determine the oscillator frequency of the IC and the output at pin10, 11 and 13.

Basically R1, P1 togeter must not be less than 10K, and above 1M, while C1 should not be less than 100pF (higher value have no restrictions) in order to maintain proper functioning of the chip.

Pin 10 and 11 are complementary outputs which behave in a  push-pull manner, meaning when pin10 is high pin11 is low and vice versa.

Pin 13 is the clock output of the IC 4047, each high pulse measured at this output enables pin10/11 to change positions with their logic levels, while low logics does not influence any response on pin10/11.

Pin13 is normally kept open when not in use, it may be applied in cases where a frequency or pulsed output may be required for the other stages of the circuit for enhancing purposes, such as for making modified PWM based inverters etc.

Features

  • Low-power CMOS design
  • Wide operating voltage range: 3V to 15V
  • Very few external components required
  • Monostable and astable operation modes
  • Adjustable pulse and frequency output
  • Schmitt trigger input for noise immunity
  • Power-on reset
  • Pin-compatible with the 4047B

Electrical Characteristics

The following table summarizes the electrical characteristics of the IC 4047:

ParameterConditionMinTypMaxUnit
Supply Voltage3515V
Supply CurrentVDD = 5V, No Load-1020μA
Input Voltage-0.5-VDD+0.5V
Output VoltageIOH = -0.4mA, VOL = 0.4V--0.1V
Rise TimeCL = 15pF-50100ns
Fall TimeCL = 15pF-50100ns
Propagation Delay-100200ns
Trigger Voltage1.52VDD-2.5V
Threshold Voltage2.53VDD-1.5V
Timing ErrorCext = 0.01μF, TA = 25°C-25%
Output Duty CycleMonostable Operation, Cext = 0.01μF50-50%

Note: This datasheet provides typical values unless otherwise specified.

Applications

The IC 4047 is commonly used in the following applications:

  • Timing circuits
  • Oscillator circuits
  • Pulse generators
  • Frequency dividers
  • Switching power supplies

Packaging

The IC 4047 is available in a 14-pin DIP package.

Ordering Information

To order the IC 4047, specify the part number followed by the package type. For example: 4047AN (DIP package).

Making a Power Inverter using IC 4047

The IC is best suited for all types of inverter, converter, SMPS and timer applications.

One typical simple square wave inverter application using the IC 4047 can be witnessed below:

The formula for calculating the frequency or the RC components are:

f = 1/8.8RC at pin#10 and pin#11

f = 1/4.4RC at pin#13

Where f is in Hz, R in Ohms and C in Farads.

Pulse time may be obtained by solving:

t = 2.48RC where t is in seconds, R in Ohms and C in Farads

You'll also like:

  • 1.  3 Terminal Fixed Voltage Regulators – Working and Application Circuits
  • 2.  High Voltage Transistor MJE13005 – Datasheet, Application Notes
  • 3.  Cheapest SMPS Circuit Using MJE13005
  • 4.  How to Protect MOSFETs – Basics Explained
  • 5.  How Electret Microphones Work – Full Tutorial and Diagram
  • 6.  How to Cascade IC 4033 in Multiple Digit Counter Display

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
95 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz