• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Inverter Circuits / SPDT Relay Switch Circuit using Triac

SPDT Relay Switch Circuit using Triac

Last Updated on September 13, 2019 by Swagatam 14 Comments

An efficient solid state single pole double throw or SPDT switch can be built using triacs for replacing a mechanical SPDT.

The post details a simple solid state triac SPDT relay circuit, using an optocoupler and a couple of triacs, which can be used as an effective replacement for mechanical relays. The idea was requested by "Cypherbuster".

Introduction

In one of the other posts we learned how to make an DPDT SSR using mosfets, however this design could be used only for high current DC loads, and not with AC loads at the mains level.

In this article we will see how a simple mains operated solid-state relay can be made using triacs and an optocoupler.

The working of any relay is specifically intended to operate two different high power loads individually and alternately with the help of an external isolated low power trigger.

In a conventional mechanical type of rely this is done by toggling the loads across its N/O and N/C contacts in response to the activation applied across its coil.

However mechanical relays have their own drawbacks such as higher degree of wear and tear, lower life, generation of RF disturbance due to sparks across the contacts, and the most vital being the delayed switching response which could be crucial in systems like UPS.

Circuit Operation

In our triac SPDT relay circuit the same function is executed through the switching of two triacs via two BJT stages and an isolating optocoupler which ensures that the changeover operation for this relay has no drawbacks as mentioned above.

Referring to the diagram, the left side triac represents the N/O contact while the right side triac operates like the N/C contact.

Circuit Diagram

Triac based SPDT Relay Switch Circuit
caution electricity can be dangerous

While the optocoupler is in the non-triggered mode, the BC547 directly associated with the opto goes into the triggered mode, which keeps the second BC547 switched OFF. This situation enables the right side triac to remain switched ON, and the other triac is held switched OFF.

In this condition any load connected with the right triac becomes operational and stays switched ON.

Now as soon as a trigger is applied to the opto coupler, it switches ON, and in turn switches OFF the connected BC547.

This situation switches ON the second BC547 and consequently the right side triac is switched OFF, ensuring that the left side triac is now switched ON.

The above condition immediately toggles the second load ON and switches OFF the earlier load, effectively fulfilling the required alternate switching of the load with the help of an isolated external DC trigger.

The two LED connected with the bases of the two BJTs indicate which load is in the activated state at any moment while the triac SPDT relay circuit is being operated.

Adding an attached power supply and Delay Effect

The above design could be further enhanced and made fully independent of an external DC power source by upgrading it with its own transformerless power supply, as shown below:

You will find the following changes in this upgraded diagram:

Addition of a 1K at the base of the right BC547 to ensure correct triggering of the left side triac

Addition of R/C network across the gates of the triacs to ensure that the two triacs are never ON together at any given instance or during the changeover periods. The diodes can be 1N4148, resistors can be 22K or 33K, and the capacitors can be around 100uF/25V.

There's one more thing that seems to be missing in the diagram, and it is a limiting resistor (approximately 22 ohms) between the 12V zener diodes and the 0.33uF capacitor, this may be important to safeguard the zener diode from sudden in rush surge through the capacitor during power switch ON.

triac based solid state relay with delay

Warning: The circuit shown above is not isolated from the mains AC input supply and therefore is extremely dangerous to touch in the switched ON condition. 

You'll also like:

  • 1.  How to Build a 220V DC Inverter UPS Circuit
  • 2.  Arduino Full-Bridge (H-Bridge) Inverter Circuit
  • 3.  Solid-State Inverter/Mains AC Changeover Circuits Using Triacs
  • 4.  SG 3525 Automatic PWM Voltage Regulation Circuit
  • 5.  Grid-tie Inverter (GTI) Circuit Using SCR
  • 6.  50 Watt Sine Wave UPS Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
14 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz