• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • +1000 Circuits
  • Hobby Circuits
  • Basic Circuits
  • Learn Arduino
  • Logic IC Pinouts
  • Disclaimer
You are here: Home / Industrial Electronics / Remote Controlled ATS Circuit – Wireless Grid/Generator Changeover

Remote Controlled ATS Circuit – Wireless Grid/Generator Changeover

Last Updated on July 3, 2019 by Swagatam 14 Comments

The post explains a remote controlled automatic transfer switch for enabling an automatic grid to generator changeover action from a specified distance. The idea was requested by Mr. odudu johnson.

Technical Specifications

Project description: Automatic changeover switch with wireless generator control abilities or mechanism.

The generator rating is going to be between 2.2kva up to 2.5kva, and much be an automatic embedded systems generator on its own not the manual gen set...

Single phase generator and the Mains will be single phase too.. Ie 220 volts 50hz..... The system will be designed to select between two available source of power Giving preference or priority to one out of the two sources of power. In this case, the selection is between public supply Mains and generator.

The ATS should monitor the Mains supply and check for complete failure or power outage upon which it changes the load over to the generator supply, sends command to the generator wirelessly to start ie ON..

And when the public supply is restored the ATS detects this sends an off command to the generator wirelessly the return the load back to the Mains............

The communication between the ATS and Mains isn't wireless just that of the gen set.....

I'll be expecting something positive

The Design

The entire design of the proposed remote controlled wireless generator automatic transfer switch circuit can be divided into the following explained 4 stages:

1) Low voltage (brownout), Grid failure detector changeover circuit:

The following circuit controls the mains ATS by detecting a possible grid low voltage condition or a complete failure. The opamp is configured as a comparator, wherein its non-inverting pin is used as the detector input via an adjustable 10k preset.

As long as the grid mains voltage is within the normal range the output of the opamp remains high, keeping the two relay driver stages switched ON.

The  first relay changeover stage comprises a DPDT relay and it forms the main ATS grid to generator changeover controller relay, while the other smaller relay becomes responsible for controlling the transmitter circuit.

While the grid mains is active, both the relays stay activated, the DPDT supplies the grid AC to the home appliances through the relevant N/O contacts. The SPDT relay keeps the transmitter (Tx) circuit switched ON so that a continuous wireless signal is sent in the atmosphere for the Rx (receiver) circuit, which is supposed to be attached with generator system somewhere in the vicinity.

 

 2) The Transmitter (Tx) Circuit:

The following diagram depicts the transmitter (Tx). The N/O contact connections from the above shown SPDT relay is connected across any one of the 4 switches (as desired)..... that is any one among the shown SW1---SW4 switches

 

3) The Receiver Circuit (Rx):

The next diagram which may be witnessed below, is the receiver (Rx) circuit, which is positioned near the generator system and is configured to respond to the above shown Tx signals and keep the generator either ON or OFF, depending upon the grid mains availability.

When the grid mains is present, one of the selected switches (SW1----SW4) from the above Tx circuit is toggled ON by the SPDT relay in the first opamp circuit.

The wireless remote signals from the Tx unit is detected by the below shown Rx circuit, resulting in a low logic signal across one of the 4 outputs (A-----D) corresponding to the particular selected input of the Tx circuit (SW1----SW4), as selected.

 4) The Relay Driver Stage

The following shown relay driver stage is used to respond to the above discussed Rx circuit output's low logic and activate a connected relay.

As long as the selected output of the receiver (Rx) circuit remains ON, the BC557 from the below given relay driver stage also stays ON, keeping the associated relay activated, this is supposed to happen while the grid mains is available.

As indicated below, the relay stays switched ON across its N/O contacts which in turns keeps the generator switched OFF.

However in an event of possible low grid voltage or a complete failure, the opamps controlled ATS relays reverts to the N/C contacts, toggling the load towards the generator side of the changeover, and simultaneously the transmitter circuit is switched OFF.

With no signal available for the Rx unit, the corresponding relay driver stage and the relay are also switched OFF. The relay contacts now shift to its N/C contact enabling the generator with a switch ON power.

The generator is thus switched ON and the power to the appliances is supplied and changed over by the generator mains AC, via the ATS DPDT relay contacts from the opamp circuit.

 

SHARING IS CARING!



Previous: How to Make a Classroom Debate Timer Circuit
Next: How to Generate Free Electricity Using a Flywheel

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  Automatic Inverter Fan Switch ON while Charging and Inverting Modes
  • 2.  2 Cool 50 Watt Inverter Circuits for Students and Hobbyists
  • 3.  3 Simple Solar Panel/Mains Changeover Circuits
  • 4.  Single Phase Preventor Circuit
  • 5.  Easy H-Bridge MOSFET Driver Module for Inverters and Motors
  • 6.  Remote Controlled Night Lamp Circuit

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. Vane says

    I need to simulate a circuit, ATS for a small portable generator, for my last project. Can I use this circuit or do you have another I can use?

    Reply
    • Swagatam says

      Yes you can try it but only if you have understood the working of the design correctly.

      Reply
  3. vhafuwi says

    Hi Swagatham , I hope my idea is not too ambitious, I am working on a DC Generator for the Solar Off Grid System,A small lawn mower generator hooked with a 12,24v alternator to charge the battery bank, however this need to be automated.
    This ATS circuit comes handy , was just wondering if I can

    1. Power the transmiter circuit with my solar system 12v ,
    2.Trigger the transmiter to start/stop the gen from voltmeter , if the battery reaches 11.7V gen start and when it reaches 14.1v it stops
    3.the receiver circuit remains the same

    let me know what i may haave to change on the circuiit to achieve my goal ,

    thanks in advance

    Reply
    • Swag says

      Hi Vhafuwi,

      yes all those mentioned points can be implemented using a 433MHz remote control module.
      I guess no changes would be required and you can accustom the same design for your application also.

      Reply
  4. Benno Leo Dominic Smith says

    I am looking for an ATS that can be triggered by a relay rather than by the loss of power from the grid.
    Can your diagram above be modified to provide for the relay and not the loss of power as the trigger for the switch to be activated?

    Reply
    • Swag says

      You can simply eliminate everything in the first circuit except the extreme right side BC547/relay stage.

      the trigger can be applied at the 10K end of the BC547. As long as this trigger is present the generator at the remote end will be switched OFF, and switch ON as soon as the trigger is removed.

      Reply
  5. odudu johnson says

    Hello boss, the circuit hav been giving issues, one why did u use a 12v relay can that carry 220volts 50hz Mains or even that of the generator….. 2….what is the starting process involved with the generator in terms of the starting relay…… Please can I get a block diagram of the entire circuitry…… More information about it can still be posted because this is like my final year project report and it's important to know durin construction…. Thankzzz boss

    Reply
    • Swagatam says

      hello boss,
      that would be difficult for me due to lack of time, Im busy with many pending assignments..

      Reply
    • Swagatam says

      …the relay contact rating needs to be matched with the load specs….

      Reply
  6. INNOVATIVE IDEAS says

    Thanks boss. Please what is the component labelled U2 in both Tx and Rx stages?

    Reply
    • Swagatam says

      those are decoder/encoder ICs for the respective modules

      Reply
  7. odudu johnson says

    Nice boss still yet to simulate the circuit

    Reply
    • Swagatam says

      my pleasure boss, go ahead…

      Reply
  8. odudu johnson says

    Thankzzz boss…….. Am yet to study the circuit…

    Reply



Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (94)
  • 741 IC Circuits (18)
  • Amplifiers (49)
  • Arduino Engineering Projects (82)
  • Audio Projects (84)
  • Battery Chargers (76)
  • Car and Motorcycle (88)
  • Datasheets (45)
  • Decorative Lighting (Diwali, Christmas) (32)
  • DIY LED Projects (82)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (17)
  • Heater Controllers (24)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (27)
  • Infrared (IR) (39)
  • Inverter Circuits (94)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (55)
  • Mini Projects (153)
  • Motor Controller (65)
  • MPPT (7)
  • Oscillator Circuits (15)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (65)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (56)
  • Sensors and Detectors (116)
  • SG3525 IC (5)
  • Simple Circuits (72)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (39)
  • Ultrasonic Projects (12)
  • Water Level Controller (46)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results

© 2021 · Swagatam Innovations