• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Car and Motorcycle / Adding a PWM Multi-spark to Automobile Ignition Circuit

Adding a PWM Multi-spark to Automobile Ignition Circuit

Last Updated on January 11, 2019 by Swagatam 13 Comments

The post investigates a simple 2 pin oscillator circuit which may be inserted between the pickup coil and the CDI unit of a vehicle for achieving an induced multi trigger input in response to each signal from the pickup coil coil, this in turn is expected to enhance the sparking ability of the CDI coil. The idea was requested by Mr. Vimal.

Technical Specifications

Thank you for your help on the 555 buck boost circuit.

Needed your help with one more circuit concept.

Please note the details as below.

1) In a petrol engine vehicle, the sparking is done due to an ignition coil. This coil is driven on 12 volts pure dc.

2) In some experiments it was noticed that if the coil is supplied with pulsed dc at a certain frequency, the sparks become stronger due to the coil operating at its optimum resonant frequency without requiring an actual increase in operating input voltage or even bigger amperage draw.

3) Increasing input voltage from 12 volts to higher voltages would also increase the spark intensity, but this would lead to damage of the primary coil in the long run. Also as the primary coil would heat up more due to higher voltage, it would draw more amps eventually leading to coil failure.

4) I wanted your help in designing a circuit which is a passive dc to variable pulse dc converter, and does not require any ground connection to operate.

The criteria of "NO GROUND CONNECTION" is due to the fact, that the circuit should fix in series on the +ve input line of the coil as it is not possible to modify the original harness of the vehicle to change coil connections.

(+DC voltage IN and Pulsed DC voltage OUT fed directly only on the + live line connecting to the +ve terminal of the coil).

5) The total amp draw of a regular ignition coil usually does not exceed 15 amps. Hence this circuit should be able to handle 15 amps of power draw passing through it.

6) An increase of 1 - 2 volts above the input voltage is acceptable.

7) I found a circuit online which does not require an external ground to operate. I do not understand the deep working of electronics, hence I am attaching it herewith for your reference. I am not sure if this design would work for the application that I have in mind.

caution electricity can be dangerous

8) The reason behind having a variable frequency control on this circuit is that we can have a test bench setup to study the best resonant frequency at which automotive coils would operate without any damage.

I would really appreciate it if you could help me with the design and concepts of this kind of circuit.

Please note that the attached circuit is for your reference. The actual circuit design required can be different, so please feel free to offer your kind advice if the required end results could be achieved by using different principles and circuit design.

P.S. :- Sorry for not posting this on your blog, as I did not want to flood your blog with my outlandish ideas.
Thanks for your time and support.

Vimal Mehta

The Design

The attached circuit above might work if its 12V terminal is connected with the vehicle's +12V battery and the output from pin#3 to the pickup coil. This would enable breaking of the pickup signal into many short pulses, however the idea does not appear to be an efficient approach, since this would reduce the CDI triggering time to some lower level and in turn might cause a drop in the intensity of the generated sparks.

Any other more efficient configuration doesn't look feasible with the above the design.

The requested multi spark induction into an existing CDI ignition system may be achieved with the help of the following explained circuit:

 

The circuit actually is inspired from a two pin automobile flasher circuit invented by me a long time ago.

The circuit actually oscillates in a regenerative kind of fashion, where the two transistors complement each other to turn ON fully and turn OFF fully at a set frequency.

You may also want to refer to the following related articles for more info:

Adjustabe CDI Spark Advance/Retard Circuit for Motorcycles

Universal Multi-spark Enhanced CDI Circuit for Automobiles

The frequency is determined by R1 and C1, any of these components can be altered for achieving the desired oscillations across the output terminals.

For the proposed multi spark variable frequency CDI ignition, the above circuit can be connected in series with the pick-up signal wire as illustrated in the diagram.

The voltage from each pulse is stored inside C2 for some extended limit of time, during which the circuit quickly delivers a number of short pulses, at a frequency determined by the C1, R1 combination.

R2, and R3 also influence the oscillation rates but these might also influence the pulse width of the output, and can be optimized some for getting the right amount of PWM, and a most effective response from the CDI coil.

Parts List

R1 = 100k preset

R2, R3 = 10K,

R4 = 33K,

T1 = TIP122

T3 = BC557,

C1 = 0.33uF/25V

C2 = 100uF/25V (other values can be tried)

D1 = 1n4007,

 

You'll also like:

  • 1.  Bicycle LED Light Circuit Using a Single 1.5V Cell
  • 2.  Darkness Activated Car Head Lamp Circuit with DRL
  • 3.  LED Tail Ring Light Circuit for your Car
  • 4.  Flashing LED Battery Low Indicator Circuit
  • 5.  Car Head Lamp Fader Circuit (Breathing Effect Generator)
  • 6.  Cellphone RF Triggered Car Amplifier Auto-Mute Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

New Posts

  • 220 V Slow Fade Bedside Lamp Circuit
  • Sound Activated Remote Control Circuit
  • High Voltage DC Motor Speed Regulator Circuit
  • High Efficiency Solar Charger Circuits using Switching Regulators
  • Mobile Signal Vibrator Circuit

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
13 Comments
Newest
Oldest
Inline Feedbacks
View all comments


Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (118)
  • Battery Chargers (83)
  • Car and Motorcycle (96)
  • Datasheets (77)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (14)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (30)
  • Home Electrical Circuits (106)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (96)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (67)
  • Mini Projects (152)
  • Motor Controller (68)
  • MPPT (7)
  • Oscillator Circuits (25)
  • PIR (Passive Infrared) (8)
  • Power Electronics (35)
  • Power Supply Circuits (81)
  • Radio Circuits (10)
  • Remote Control (49)
  • Security and Alarm (64)
  • Sensors and Detectors (127)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (62)
  • Timer and Delay Relay (54)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz