• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Car and Motorcycle / LED Brake Light Circuit for Motorcycle and Car

LED Brake Light Circuit for Motorcycle and Car

Last Updated on March 13, 2019 by Swagatam 16 Comments

The post explains how to make and replace existing bulb type brake lights in vehicles with high efficiency LED lamps.The idea was requested by Mr. Awan.

Technical Specifications

I would like to build a brake lamp project using 1 watt high power leds, consisting of 12-15 leds.
the leds would light on dim parking lights and would light full on brake pedal press. kindly provide me a circuit..
kind regards,
Awan

The Design

LEDs are a lot economical than ordinary incandescent lamps or even the modern halogen lamps in terms of their efficiency, luminance and life.

Therefore even in automotive field we can now witness a rapid transition from the old filament type bulbs to the modern high bright LED lamps.

These are normally being implemented as brake lights and head lights in most modern and the new generation vehicles.

In the proposed automotive brake light circuit 1 watt high efficiency LEDs are employed for executing the ultra high intensity illumination.

We all know that basically today's all modern high watt LEDs require two crucial parameters in order to function correctly and safely, namely a current controlled supply and thermal or heat controlled assembly.

The first criterion can be implemented by using any modern sophisticated  linear IC such as a LM338, I have discussed it elaborately in one of my previous articles high watt LED current limiter circuit.

For the second condition one can simply use a special aluminum base PCB mounted on a heatsink for assembling the 1 watt LEDs.

Circuit Diagram

caution electricity can be dangerous

Circuit Operation

The circuit for the LED brake light may be witnessed above, and it looks pretty straightforward.

The LM338 is configured as a current limiter, where Rx determines the maximum allowable amps to the connected LEDs. It may be calculated using the following formula:

Rx = 1.25/LED current

When LeDs are connected in series there effective current consumption
is always equal to the rating of the one individual LED. Therefore in
the diagram each string would consume 350mA since this is the rating of
each 1 watt LED.

Combined current for all the three strings would be 3 x 350mA = 1050mA or approximately 1 amp

Substituting the above parameter in the formula we have:

Rx = 1.25/1 = 1.25 Ohms

Wattage = 1.25 x 1 = 1.25 watts

The resistors Ry which can be seen connected in series with the LEDs are actually optional, these may be included only for assisting the IC and providing proper balance across the LED strings.

It may be calculated using the following formula:

Ry = (Supply - LED total FWD voltage) / LED current

Since here the LEDs are specified with a forward voltage of 3.3V and 3 nos
are arranged in the series, the combined forward voltage becomes 3 x 3.3
= 9.9V

For reducing full loading of the LEDs, we can take the current at 300mA instead of the specified 350mA

Therefore Ry = (13 - 9.9) / 0.3 = 10.33 ohms or simply 10 Ohms

wattage = (13 - 9.9) x 0.3 = 0.93 watts or 1 watt

It seems we missed an important inclusion in the above diagram, it's the dimmed LED feature during the normal course of the vehicle and while the brakes are not applied.

The following diagram suggests how simply this may be implemented using a parallel connected resistor Rz, with Rx.

Applying the Dimming Control

 

Here the values of the Rx and Rz may be identical but twice that of the above calculated value that is 1.25 x 2 = 2.5 Ohms. This would allow a 50% dimming of the tail lights while the brakes are in the released position.

If one desires to obtain further dimming of the LEDs Rx may be increased to 3 ohms or 3.5 Ohms, this would also mean lowering the Rz value proportionately such that the parallel value of the two resistors constitutes 1.25 Ohms.

You'll also like:

  • 1.  Multi-spark CDI Circuit
  • 2.  Cellphone Controlled Car Starter Circuit
  • 3.  Accurate Speedometer Circuit
  • 4.  Infrared Remote Control Safe Lock Circuit
  • 5.  How to Make Car LED Bulb Circuit
  • 6.  Sequential Bar Graph Turn Light Indicator Circuit for Car

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
16 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz