• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Power Electronics / How to Convert 12V DC to 220V AC

How to Convert 12V DC to 220V AC

Last Updated on April 24, 2020 by Swagatam 102 Comments

The article explains a very simple method of acquiring 220V AC from a 12v DC source. The idea utilizes inductor/oscillator based boost topology with the help of the IC 555.

We are quite familiar about inverters which convert a DC potential to higher AC potentials at mains levels.
However these units involve complex and expensive configurations for acquiring the required outputs.

A much simpler approach of achieving the above results is by employing a oscillator mosfet boost converter circuit.

If the waveforms are not critical for your applications this method can be a lot simpler and cheaper to implement.

Circuit Operation

Referring to the circuit diagram below, we see that the entire idea is based upon the versatile, evergreen IC 555.

Here it's configured in its standard astable multivibrator mode for generating the required pulses at a frequency determined by the resistors 4k7, 1k and the capacitor 680pF.

The duty cycle may be appropriately adjusted by experimenting the 1K resistor.

The output is received at pin#3 of the IC, which is fed to the gate of an N-channel mosfet.

When power is switched ON, the positive pulses emanating from pin#3 switch ON the mosfet into full conduction.

During the above periods the 12V high current potential is pulled to ground via the coil by the mosfet.

As we all know inductors always try to oppose instant changes in current polarity through it, therefore during the negative pulses when the mosfet remains switched OFF, forces the coil to dump the stored potential in it in the form of high voltage EMF pulse into the output.

This voltage may be equal to 220V and gives rise to the required potential at the shown outlet of the circuit.

The above straightforward operation is repeated continuously at the given frequency providing  a sustained 220VAC at the output.

The BC547 and its base network is introduced for limiting the output voltage to the required degree.

For example if the required output is 220V, the 47K preset may be adjusted such that the220V mark never exceeds, irrespective of the coil back emf rate or the input voltage fluctuations.

The mosfet can be any 30V, 50 amp type, for example a NTD4302 may be used.

The coil wire should be thick enough to hold up to 30 or more amps.

Circuit Diagram

12V to 220V converter circuit
caution electricity can be dangerous

IC 555 Pinout Details

Mosfet IRF 540 Pinout Details

IRF540 pinout details

You'll also like:

  • 1.  220V SMPS Cell Phone Charger Circuit
  • 2.  Simple Buck-Boost Converter Circuits Explained
  • 3.  5V, 12V Buck Converter Circuit SMPS 220V
  • 4.  Mains 20 Watt Electronic Ballast Circuit
  • 5.  How Switch Mode Power Supply (SMPS) Circuits Work
  • 6.  Single IC Dimmable Ballast Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
102 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz