• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Battery Charger Circuits / Single Transformer Inverter/Charger Circuit

Single Transformer Inverter/Charger Circuit

Last Updated on August 3, 2020 by Swagatam 243 Comments

In this post I have explained how to build an innovative inverter circuit with a single transformer that works both as an inverter and a battery charger transformer, I have explained the details from the following discussion.

Table of Contents
  • The Circuit Objective
  • How the Circuit Functions
  • Using a 2-Wire Transformer

The Circuit Objective

Though you may find many inverters having an integral battery charger, the section will mostly employ a separate transformer for implementing it.

In the following post I have explained a unique design which utilizes the inverter transformer for power inverting as well as for charging the battery.

The circuit diagram below shows a design where a single power transformer is used for inverting purpose as well as for charging the battery when mains is present.

The good thing about the circuit is that the transformer doesn't employ separate winding for this, rather works with the same input winding and reverts DC to the battery with the help of a few DPDT relays.

The circuit can be understood with the following points:

How the Circuit Functions

The inverter section can be easiy recognized in the diagram, R1 to R6, including the T1 and T2 forms a general astable multivibrator circuit for producing the required 50 or 60 Hz pulses.

These pulses drive the mosfets alternately which in turn saturate the transformer by switching the battery voltage in it.

The secondary of the transformer generates the corresponding magnitude of AC which is finally used for operating the connected appliances.

The above configuration suggests an normal or ordinary inverter operation.

By adding a couple of DPDT relays in the above discussed operation, we can force the circuit to charge the battery in the prsence of an AC mains source.

The coils of the two relays are powered through a capacitive low current compact power supply, involving C6, C5, D1----D5.

The above circuit is connected to a mains AC source, this source is also connected to RL1 poles.

The second relay RL2 is wired up with input winding of the transformer.

In the absence of mains AC, the position of the relay contacts are in the N/C as shown in the figure.

In this position the mosfets get linked with the transformer input winding, and the battery with the circuit so that the inverter starts oscillating and the output appliances gets the AC power from the battery.

In the presence of mains AC the relay coils instantly get the required DC power and the contacts activate.

RL1 activates and connects the mains input to the transformer, the appliances also get connected with the mains AC in the process.

Also due to the action of RL2 the mosfets get disconnected from the transformer, while the the lower tap connects with D6.

Since the center is already connected to battery positive, the inclusion of D6 provides a half wave rectified voltage to the battery, which is effectively filtered by C3 so that the battery is able to get the required sufficient charging voltage.

The above charging process continues until mains is present, so it should be monitored manually. When mains fails, the action reverts into inverting mode without interrupting the appliance operations and by using a single transformer for both the operations.

C4 makes sure that RL1 always activates a shade later than RL2 for safety reasons.

warning message: electricity is dangerous, proceed with caution

CAUTION: THIS CIRCUIT IS DEFINITELY NOT RECOMMENDED FOR THE NEW HOBBYISTS, IT'S SUITABLE ONLY FOR THE EXPERTS. IF YOU ARE A NOVICE AND INTERESTED TO TRY THIS.... BUILD IT AT YOUR OWN RISK.

Parts List

  • R1, R2 = 27K,
  • R3, R4, R5, R6 = 470 Ohms,
  • C1,C2 = 0.47uF/100V metallized
  • T1, T2 = BC547,
  • T3, T4 = any 30V, 10amp mosfet, N-channel.
  • C3 = 47000uF/25V
  • C4 = 220uF/25v
  • C5 = 47uF/100v
  • C6 = 105/400V
  • R7 = 1M
  • D1---D5 = 1N4007
  • D6 = 1N5402
  • RL1, RL2 = DPDT, 400 OHMS, 12V, 7 AMPS/220V
  • Transformer = 12-0-12V, current as per requirement.

For only inverter design please refer to this ARTICLE

Using a 2-Wire Transformer

If you do not want to use a center tap transformer for the inverter, then you can use the following P-channel and N-channel MOSFET H-bridge inverter module for getting an identical single transformer inverter/charger results:

You'll also like:

  • 1.  Simple Ni-Cd Battery Charger Circuits Explored
  • 2.  3v, 4.5v, 6v, 9v, 12v, 24v, Automatic Battery Charger Circuit with Indicator
  • 3.  How to Illuminate 1 Watt LEDs with Cell Phone Charger
  • 4.  High Voltage Battery Charger Circuit
  • 5.  Gel Cell Battery Charger Circuit [Constant Current, Constant Voltage]
  • 6.  Battery Charger Circuit using Fixed Resistors

Filed Under: Battery Charger Circuits Tagged With: Charger, Inverter, Single, Transformer

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « Single Phase Preventor Circuit
Next Post: How to Generate PWM Using IC 555 (2 Methods Explored) »
Subscribe
Notify of
guest


guest
243 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (83)
  • Datasheets and Components (106)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (40)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Understanding Capacitor Codes and Markings
    • Swagatam on Mains High Low Voltage Protection Circuit with Delay Monitor
    • Swagatam on 3 Phase Induction Motor Speed Controller Circuit
    • Swagatam on Smart Bathroom Exhaust Fan Controller Circuit with Sensors
    • James Williams on 3 Phase Induction Motor Speed Controller Circuit

    © 2025 · Swagatam Innovations