• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Meters and Testers / Signal Injector Circuits for Quick Troubleshooting of all Audio Equipment

Signal Injector Circuits for Quick Troubleshooting of all Audio Equipment

Last Updated on May 22, 2020 by Swagatam 9 Comments

This simple signal injector circuits explained below can be accurately used for troubleshooting and alignment applications of all kinds of audio and high frequency equipment.

1) Using a Single IC 7400

One of the extremely handy devices for repairing audio and high frequency instruments is without question a equipment that will give you a modulated frequency to allow tracing the path of the signal via the circuit.

This single IC signal injector circuit employs probably the most prevalent TTL integrated circuits, the SN7400N, which is made of four 2-input NAND gates. Although the overall circuit part number is 40, just about five of these are inside the i.c. package which ensures that building becomes super easy.

caution electricity can be dangerous

How it Works

By correctly joining the four gates of the IC as shown above, configures a multivibrator square wave generator having a fundamental frequency within the full audio range.

Due to the fact that the the output waveform from this circuit produces extremely short ON/OFF periods, the harmonics generated range in the high frequency UHF band. Therefore the generator could be used to for troubleshooting all types audio equipment along with VHF, UHF receiver circuits.

How to Test

The completed device could be tested by attaching a pair of headphones between the probe terminal and chassis negative clip of the circuit. If everything is good a frequency note of approximately 3kHz will be clearly audible.

To test the ultra high frequency (UHF) attributes of the generated tone, hook up the probe to a TV receiver aerial socket, and switch ON power. You must now be able to hear an audible output from the TV receiver speakers.

The earth clip is actually not necessary for use when the injector is used at radio frequencies, however you may find a much amplified output if it is clipped with the negative of the circuit under test.

Parts list for the above design is given below:

Using IC 4011

This signal injector design provides an output consisting of a 100 kHz fundamental frequency and harmonics ranging as high as 200 MHz. The circuit also comes with an output impedance of 50 ohms.

The NAND gates N1, N2 and N3 work like an astable multivibrator with a perfectly balanced squarewave output and a frequency that's roughly 100 kHz. The fourth NAND N4 gate is employed as a buffer stage at the oscillator output.

Because we have a perfectly symmetrical squarewave at the output, it includes only the odd harmonics of the fundamental frequency, wherein the harmonics in the higher order tend to be rather weak. This is because of the relatively slow rise time of the CMOS ICs used in this circuit.

How the circuit Works

Since it is important for the upper harmonics to be abundantly present, to ensure that the circuit works efficiently at high frequencies, the N4 output can be seen connected to a differentiating network R2/C2.

This network attenuates the fundamental frequency with respect to the harmonics, generating a sharply pointed pulse waveform.

This waveform is then amplified by T1 and T2. This signal includes a high amount of harmonics and, because the waveform has extremely low dutycycle, this stage along with T2 consumes hardly any powerparticularly.

The output frequency from the signal injector circuit could be tweaked through the preset P1.

When a precise output frequency becomes necessary then the signal injector could be fine-tuned by eliminating its 2nd harmonic with the 200 kHz Droitwich broadcast transmitter.

The frequency stability of the signal injector depends on how technically well it is constructed. To reduce capacitance effects from the user's hand, the device must be encased inside a metallic box which will work like a shielded cover, with only one terminating output in the form of the testing probe. In case preferred, a 1 k preset could be incorporated in series with P1 to enabling more granular fine-tuning.

Parts List

All resistors are 1/4 watt 5%

  • R1 = 47k
  • R2 = 27k
  • R3 = 100k
  • R4 = 470 ohms
  • R5 = 15k
  • R6 = 47 ohms
  • P1 = 50k preset
  • C1, C3, C4 = 100pF
  • C2 = 10pF
  • C5 = 1nF
  • T1, T2 = BC547
  • N1--N4 = IC 4011
  • battery = 9V PP3

Another IC 4011 Injector

Many of the on-market low priced signal injectors generate a squarewave output of around 1 kHz. Although the squarewave is abundant in harmonics that span out into the Megahertz range, these are helpful to test r.f. Circuits, and the basic need for audio processing.

The signal generator discussed here is subtly different seeing as how the 1 kHz squarewave is switched on and off at roughly 0.2 Hz, making the troubleshooting procedure much easier.

Figure 1 displays the entire signal injecter circuit. The tracking oscillator is an astable multivibrator constructed across a couple of CMOS NAND gates N1 and N2. It therefore switches T1 on and off, driving an LED indicating if the signal is on.

Circuit Description

The 1 kHz squarewave generator also includes an astable multivibrator that uses the two additional NAND gates in the IC 4011 pack .

The astable is gated on and off by the 1st astable. The 1 kHz oscillator output is buffered by the T2 and T3 transistors, the output being extracted from the T3 collector through a potentiometer P1 that is used to tweak the output level.

The peak voltage at the output is equal to the supply voltage (5.6 V). Diodes D1 and D2 enable some protection from harmful transients for T2 and T3, and C6 inhibits the circuit of any DC voltage on the circuit which is being tested.

High Voltage Application

In particular, if the signal injector is to be used to troubleshoot high voltage circuits, then C6 operating voltage has to be rated at 1000 V. In this case it would be too bulky to install directly on the PCB,  as given in the following layout .

Mounting the entire circuit inside a well insulated box is also a smart option, particularly when operating on AC LIVE audio equipment.

The specs of  D1 and D2 should be able to withstand whatever intermittent voltages and currents that may likely occur.

Four 1.4 V mercury batteries power for the circuit. The specific battery technology chosen becomes an user preference.

You'll also like:

  • 1.  Analogue Water Flow Sensor/Meter Circuit – Check Water Flow Rate
  • 2.  4 Simple Continuity Tester Circuits
  • 3.  Alcohol Detector Meter Circuit using MQ-3 Sensor Module
  • 4.  RF Signal Meter Circuit
  • 5.  10 Useful Function Generator Circuits Explained
  • 6.  Testing Alternator Current using Dummy Load

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
9 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz