• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • +1000 Circuits
  • Hobby Circuits
  • Basic Circuits
  • Learn Arduino
  • Logic IC Pinouts
  • Disclaimer
You are here: Home / Electronic Components / Comparing MOSFETs with BJTransistors – Pros and Cons

Comparing MOSFETs with BJTransistors – Pros and Cons

Last Updated on June 17, 2019 by Swagatam 4 Comments

The post comprehensively discusses the the similarities and difference between mosfets and BJTs and also their particular pros and cons.

Introduction

When we talk of electronics, one name becomes extremely related or rather common with this subject and that is the transistors, more precisely the BJT.

Electronics is in fact based on these outstanding and indispensable member, without which electronics might virtually cease to exist. However with advancements in technology, mosfets have emerged as the new cousins of the BJTs and have of late taken the center stage.

For the many newcomers, mosfets can be confusing parameters compared to the traditional BJTs, simply because configuring them requires critical steps to be followed, not adhering to which mostly leads to permanent damage to these components.

The article here has been specifically presented with a view to explain in simple words regarding the many similarities and differences between these two very important active parts of the  electronics family, and also regarding the pros and cons of the respective members.

Comparing BJTs or Bipolar Transistors with Mosfets

All of us are familiar with BJTs and know that these basically have three leads, the base, the collector and the emitter.

The emitter is the exit route of the current applied to the base and the collector of a transistor.

The base requires in the order of 0.6 to 0.7V  across it and the emitter for enabling switching of relatively higher voltages and currents across its collector and emitter.

Though 0.6V looks small, and is pretty much fixed, the current associated needs to be varied or rather increased in accordance to the load connected at the collector.

Meaning, if suppose you connect an LED with a 1K resistor at the collector of a transistor, you would probably need just 1 or 2  miiliamps at the base for making the LED glow.

However, if you connect a relay in place of the LED, you would require more than 30 milliamps at the base of the same transistor for operating it.

The above statements clearly proves that a transistor is a current driven component.

Unlike the above situation, a mosfet behaves entirely in the opposite way.

Comparing the base with the gate of the mosfet, the emitter with the source, and the collector with the drain, a mosfet would require at least 5V across its gate and source for enabling a load to be switched fully at its drain terminal.

5 volts might look massive compared to the transistor's 0.6V needs, however one great thing about mosfets is that this 5V works with negligible current, irrespective of the connected load current, meaning it doesn't matter whether you've connected an LED, a relay, a stepper motor or an inverter transformer, the current factor at the gate of the mosfet becomes immaterial and may be as small as a few microamps.

That said, the voltage may need some elevation, may be upto 12V for mosfets at their gates, if the connected load is too high, in the order of 30 to 50 amps.

The above statements shows that a mosfet is a voltage driven component.

Since voltage is never a problem with any circuit, operating mosfets becomes much simpler and efficient especially when bigger loads are involved.

Bipolar Transistor Pros and Cons:

  1. Transistors are cheaper and does not require special attentions while handling.
  2. Transistors can be operated even with voltages as low as 1.5V.
  3. Have little chance of getting damaged, unless something drastic is done with the parameters.
  4. Require higher currents for triggering if the connected load is bigger, making it imperative for an intermediate driver stage, making things much complex.
  5. The above drawback makes it unsuitable for interfacing with CMOS or TTL outputs directly, in case the collector load is relatively higher.
  6. Have negative temperature coefficient, and therefore requires special care while connecting more numbers in parallel.

MOSFET Pros and Cons:

  1. Requires negligible current for triggering, regardless of the load current magnitude, therefore becomes compatible with all types of input sources. Especially when CMOS ICs are involved, mosfets readily "shake hands" with the such low current inputs.
  2. These devices are positive temperature coefficient, meaning more mosfets can be added in parallel without the fear of a thermal runaway situation.
  3. Mosfets are comparatively costlier and needs to be handled with care, especially while soldering. As these are sensitive to static electricity, adeqaye specified precautions become necessary.
  4. Mosfets generally require at least 3v for triggering so cannot be used for voltages lower than this value.
  5. These are relatively sensitive components, little negligence with the precautions can lead to an instant damage to the part.
SHARING IS CARING!



Previous: Simple PIR LED Lamp Circuit
Next: Rain Triggered Instant Start Windshield Wiper Timer Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  Difference Between Alternating Current(AC) and Direct Current(DC)
  • 2.  Digital-to-Analog (DAC), Analog-to-Digital (ADC) Converters Explained
  • 3.  2N3055 Datasheet, Pinout, Application Circuits
  • 4.  Triacs – Working and Application Circuits
  • 5.  How to Generate PWM Using IC 555 (2 Methods Explored)
  • 6.  High Current Voltage Doubler Circuit

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. Stephen says

    This is awesome, thanks very much.

    Reply
    • Swagatam says

      You are welcome!

      Reply
  3. Vasilis Karastergios says

    Very well explained as always!

    Reply
    • Swagatam says

      My pleasure Vasilis!!

      Reply



Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (93)
  • 741 IC Circuits (18)
  • Amplifiers (49)
  • Arduino Engineering Projects (82)
  • Audio Projects (84)
  • Battery Chargers (76)
  • Car and Motorcycle (88)
  • Datasheets (45)
  • Decorative Lighting (Diwali, Christmas) (32)
  • DIY LED Projects (82)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (17)
  • Heater Controllers (24)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (27)
  • Infrared (IR) (39)
  • Inverter Circuits (94)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (55)
  • Mini Projects (153)
  • Motor Controller (65)
  • MPPT (7)
  • Oscillator Circuits (15)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (65)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (56)
  • Sensors and Detectors (116)
  • SG3525 IC (5)
  • Simple Circuits (72)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (39)
  • Ultrasonic Projects (12)
  • Water Level Controller (46)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results

© 2021 · Swagatam Innovations

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok