• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Battery Chargers / Triac Battery Charger Circuit

Triac Battery Charger Circuit

Last Updated on September 13, 2019 by Swagatam 38 Comments

caution electricity can be dangerous

A triac based battery charger replaces a normal relay for automatically cutting off power to the battery very efficiently.

The post explains a simple a battery charger circuit using a triac auto shut-off facility. The circuit can be used for charging any high current, high AH types battery with a full-charge auto cut-off feature.

The idea was requested by Mr. Rakesh Parmar.

Using Triac Instead of Relay

In one of the earlier posts we learned a high current battery charger circuit based on a relay total shut off concept, which used a relay to initiate the charging process by switching ON the mains to the transformer and then shutting off the mains as soon as the full charge level was reached for the
battery.

In the proposed triac based battery charger circuit the operational principle is exactly similar except the incorporation of a triac instead of a relay.

Circuit Diagram

battery charger using TRIAC

When mains power is applied the circuit does not switch ON by itself, and remains in a standby position.

The indicated push button is positioned for initiating the charging process, therefore as soon as this switch is pressed the triac ismomentarily shorted allowing the transformer to access the mains power
for that instant.

The above action also instantaneously allows the circuit to get powered for that particular period of time.

How it Works

Assuming the battery to be in the discharged position, the above initialization causes a voltage to appear at pin#2 of the opamp at a level lower than the referenced pin#3 of the IC.

This in turn causes pin#6 of the opamp to go high, activating the triac and also latching the transformer in the powered position.

The entire circuit now gets latched and powered even after the switched is released, providing the required charging parameters to the battery. The red LED illuminates confirming the charging initialization of the battery.

As the battery gets charged, pin#2 potential gradually begins rising, until when finally it goes above the reference level of pin#3, which immediately prompts the output of the IC to go low. The moment this happens the triac gate trigger gets cut-off, breaking the latching action, and the entire circuit gets switched OFF.

The circuit returns to its previous standby position, until the next time when the switch is pushed again
for a new caging cycle.

If you liked this battery charger circuit using triac, please do share it with the others.

You'll also like:

  • 1.  Laptop Charger Circuit from 12V Battery
  • 2.  12V LED Backpack Power Supply Circuit
  • 3.  How to Select the Right Charger for Li-Ion Battery
  • 4.  Battery Cut Off Charger Circuit Using a Single Relay
  • 5.  How to Switch Two Batteries Manually using Opto Coupler
  • 6.  Solar Water Heater Circuit with Battery Charger

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
38 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (120)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz