• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Inverter Circuits / Automatic Inverter Fan Switch ON while Charging and Inverting Modes

Automatic Inverter Fan Switch ON while Charging and Inverting Modes

Last Updated on August 3, 2020 by Swagatam 25 Comments

The post explains a simple method of automatically switching ON an inverter fan whenever the unit is operating in the charging mode or inverter mode, in order to ensure optimum cooling of the internal power devices. The idea was requested by Mr. Sudip Bepary.

Circuit Objectives and Requirements

  1. I have just bought a new sine wave ups card (850va) (pic16f72)... It's working good.But, this board does not have cooling fan terminal.
  2. My transformer and Mosfet is getting hot at the condition of inverting and charging.
  3. So, please respond me with proper guide to connect DC cooling in this board to which the fan can on at time of charging and inverting.
  4. Please, please, please help me from this problem.

The Design

The requested idea for an automatic inverter fan switch ON circuit while the inverter is in the inverting mode or charging mode can be implemented using the following explained concept:

 

Automatic Inverter Fan Switch ON while Charging and Inverting Modes

caution electricity can be dangerous

As can be seen in the figure, the negative of the battery is connected with a series Rx resistor such that any current whether from the charger or from the inverter passes through this resistor during the irrespective operations.

This implies that during any of the operations the resistor Rx is able to generate a proportionate amount of potential drop across itself enabling the connected sensing circuit to respond to this developed voltage.

A bridge rectifier can also be seen connected across Rx to ensure that it always produces a single polarity voltage regardless of the polarity of the current that may be passing through Rx.

For example while charging the battery the current polarity could be the opposite compared to the inverting mode polarity, however the bridge rectifier corrects both the possibilities and offers a single polarity output for the next stage which is an opto coupler stage.

The optocoupler LED lights up whenever the battery is operated by some method and this is instantly converted into a triggering voltage for the BJT 2N2222 associated with the optocoupler transistor.

The 2N2222 along with the opto transistor is configured in a Darlington mode to ensure a high gain for the BJT pairs which in turn makes sure that the Rx value can be selected to be as small as possible, thereby allowing minimum resistance for the inverter operations.

As soon as the 2N2222 conducts it turn ON the connected fan which begins cooling the vital devices of the inverter and makes sure that they are never hot and vulnerable during the charging process or while the inverter is in the inverting mode.

Calculating the Current Limiter Resistor

The Rx value may be selected with some trial and error. The LED could be expected to illuminate just slightly at around 0.7V, therefore the formula for calculating Rx can be expressed as

R = V/I = 0.7/I

I (current0) could be selected to be 50% of the calculated charging current, since at this current the power devices could be expected to be just getting warm.

Let's assume if the charging current is 10 amps, then the formula could be handled in the following manner

R = 0.7/5 =  0.14 ohms

Similarly other proportionate values of Rx could be calculated for successfully initiating the proposed automatic inverter fan switch ON during charging and inverting mode of the unit.

You'll also like:

  • 1.  Multilevel 5 Step Cascaded Sine Wave Inverter Circuit
  • 2.  Inverter Circuit with Feedback Control
  • 3.  How to Make an ATX UPS Circuit with Charger
  • 4.  No Load Detector and Cut-off Circuit for Inverters
  • 5.  4 Simple Uninterruptible Power Supply (UPS) Circuits Explored
  • 6.  How to Calculate Ferrite Core Transformers

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
25 Comments
Newest
Oldest
Inline Feedbacks
View all comments


Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (118)
  • Battery Chargers (83)
  • Car and Motorcycle (96)
  • Datasheets (77)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (14)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (30)
  • Home Electrical Circuits (106)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (95)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (67)
  • Mini Projects (152)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (25)
  • PIR (Passive Infrared) (8)
  • Power Electronics (35)
  • Power Supply Circuits (81)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (64)
  • Sensors and Detectors (127)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (62)
  • Timer and Delay Relay (54)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz