• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Electronics Tutorial / What is Hysteresis in Electronic Circuits

What is Hysteresis in Electronic Circuits

Last Updated on December 20, 2019 by Swagatam 8 Comments

You might have searched regarding what is hysteresis a number of times through many different posts on different websites, but to no avail.

You might have also tried to find a comprehensive as well as an easy explanation regarding the same through various websites.

However, the explanations provided over these websites are pretty long and difficult to grasp.

Let’s try to learn through a simple example, what exactly hysteresis in an electronic circuit means.

caution electricity can be dangerous

How Hysteresis Works

The behavior of a relay towards a continuously applied variable voltage can be used to explain hysteresis concisely. Let's learn it through the following experiment:

  1. Take a 12 volt relay, connect a variable power supply to it and gradually increase the voltage from zero to 12.
  2. You will find that the relay activates at about 11 volts. Logically, if now the voltage is reduced below this level, the relay should deactivate.
  3. However, that does not happen. Practically it will be seen that the relay deactivates only after the voltage is reduced well below 9 volts.
  4. This voltage lag between the activation and deactivation thresholds can be defined and understood as the hysteresis; in this case it is for the relay.

Similarly, all electronic circuits especially in single BJT circuit you will find this small disadvantage, which may pose difficulty in maintaining fixed thresholds levels.

In efficient electronic circuits the level of hysteresis is kept to the minimum. If you have more doubts regarding what is hysteresis, do feel free to respond with your comments.

Hysteresis in Opamp

On the contrary, opamps circuits tend to be very sharp and effectively avoid hysteresis while handling a specified operation.

You might have come across many opamp based battery charger circuits, wherein the absence of a hysteresis actually becomes a disadvantage and we have to force hysteresis by adding a feedback resistor across the output and one of the input pins of the opamp to enable the hysteresis effect.

Therefore hysteresis in electronic circuits can be sometimes beneficial and sometimes a disadvantage depending on the application specifications of the circuit.

You'll also like:

  • 1.  Comparing MOSFETs with BJTransistors – Pros and Cons
  • 2.  How to Protect MOSFETs – Basics Explained
  • 3.  How to Connect a TSOP1738 IR Sensor
  • 4.  Op Amp Basic Circuits and Parameters Explained
  • 5.  Transistor Monostable Circuits with Applications
  • 6.  Solid State Relay (SSR) Circuit using MOSFETs

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
8 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz