• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • +1000 Circuits
  • Hobby Circuits
  • Basic Circuits
  • Learn Arduino
  • Logic IC Pinouts
  • Disclaimer
You are here: Home / Free Energy / Making a Thermoelectric Generator (TEG) Circuit

Making a Thermoelectric Generator (TEG) Circuit

Last Updated on October 6, 2019 by Swagatam 10 Comments

A thermoelectric generator (TEG) is a kind of "free energy device" which has the property of converting temperature into electricity. In this post we learn a little about this concept and find out how we can use it to generate electricity from heat and cold.

What's TEG

In one of my earlier articles I have already explained a similar concept regarding how to make a small refrigerator using a Peltier device

A Peltier device is also basically a TEG designed for generating electricity from a difference of temperature. A thermoelectric device is quite similar to a thermocouple, the only difference being in the composition of the two counterparts.

In a TEG two different semiconductor materials (p-n) are used for the effect whereas a thermocouple works with two dissimilar metals for the same, although a thermocouple might require a substantially larger difference of temperature compared to the smaller TEG version.

Also popularly known as the "Seebeck" effect, it enables a TEG device to initialize the generation of electricity when subjected to a difference of temperature across its flip sides. This happens due to the specially configured internal structure of the device which utilizes a couple of doped p and n semiconductors for the process.

The Seebeck Effect

According to the Seebeck principle when the two semiconductor materials are subjected to two extreme temperature levels, initiates an electron movement across the p-n junction resulting in the development of a potential difference across the outer terminals of the materials.

Although the concept appears to be amazing, all good things come with an inherent drawback and in this effect too their is one which makes it relatively inefficient.

The need of extreme difference in temperatures across its two sides becomes the most difficult part of the system, because heating up one of the sides also implies that the other side would also heat up which would eventually result in zero electricity and a damaged TEG device.

In order to ensure an optimal response and for initiating the flow of electrons, one semiconductor material inside the TEG needs to be hot and simultaneously the other semiconductor needs to be kept aloof from this heat by ensuring a proper cooling from the counter side. This criticality makes the concept a little clumsy and inefficient.

Nevertheless, the TEG concept is something which is exclusive and not feasible using any other system so far, and this uniqueness of this concept makes it much interesting and worth experimenting with.

TEG Circuit using Rectifier Diodes

I have tried to design a TEG circuit using ordinary diodes, although I am unsure whether it will work or not, I am hoping some positive results could be achieved from this set up and it has a scope for improvement.

Thermoelectric Generator (TEG) Circuit

Referring to the figures we can witness a simple diode assembly clamped with heasinks. The diodes are 6A4 type diodes, I have selected these bigger diodes in order to acquire larger surface area and better conduction rate.

Diode 6A4

The simple thermoelectric generator circuit set up shown above could be possibly used for generating electricity from waste heat, by suitably applying the required degrees of heat difference across the indicated heat conducting plates.

The right side figure shows many diodes connected in series parallel connections for achieving higher efficiency and proportionately higher accumulation of potential difference at the output.

Why Use a Diode for Making a TEG

I have assumed that diodes would work for this application since diodes are the fundamental semiconductors units consisting of a doped p-n material embedded within their two terminating leads.

This also implies that the two ends are specifically composed of the diverse materials facilitating easier application of temperature separately from the two opposite ends.

Many such modules could be built and connected in series parallel combinations for achieving higher conversion rates, and this application could be implemented using solar heat also. The side which needs to be cooled could be achieved through air cooling or through an enhanced evaporative air cooling from atmosphere for increasing the efficiency rate.

SHARING IS CARING!



Previous: Deep Soil Metal Detector Circuit – Ground Scanner
Next: Free Energy from Induction Cooktop

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  8X Overunity from Joule Thief – Proven Design
  • 2.  Generate HHO Gas Efficiently at Home
  • 3.  Free Energy Receiving Concept – Tesla Coil Concept
  • 4.  Building a Sec Exciter – By Steven Chiverton
  • 5.  How to Get Free Energy from Alternator and Battery
  • 6.  Charging Battery with Piezo Mat Circuit

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. Mira says

    it won’t work
    you need to heat or cool the PN junction
    then heat both outlets when cooling the case

    heat P cool N heat
    or
    cool P heat N cool

    Reply
  3. mark kim blando says

    Im so interested of this new thermoelecric generator sir..thanks again and again

    Reply
    • Swagatam says

      Hi Mark, the heat difference can be applied anyway round, the response will be either the generation of positive current or negative current depending on how the heat is polarized

      Reply
    • mark kim blando says

      Ah ok sir I got it..thank you alot sir swagatam..days I found your website I learned alot f your ideas.God bless you more sir swagatam

      Reply
    • Swagatam says

      you are welcome Mark!

      Reply
    • Charan says

      Hello sir, with your permission i would like to make this “TEG” , i have bought those 10, 64A diodes. Can you please help me to complete these connections with heat and cold sources. Please do mail me the procedure if possible, thanking you in advance.

      Reply
      • Swagatam says

        Hello Charan, you can try it with a single diode. Connect a millivoltemeter across the diode, then heat the cathode side lead with soldering iron and check the response on the meter. If it shows some reading then you can add more combinations of diodes as shown in the diagram for getting more output from the set up

        Reply
        • charan says

          Sir, i want to make the exact model of the above fig which you have mentioned, please do let me know how to connect heat and cold sources, i am requesting you…please

          Reply
          • Swagatam says

            Please try with a single diode as I suggested if you succeed in getting a positive response, then you can replicate the full model..the cold side can be water, and hot side from a soldering iron

            Reply
  4. mark kim blando says

    Hi hello sir swagatam..this heat and cool you write above is atouched to the anode(cool) and cathode (heat) ?

    Reply



Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (94)
  • 741 IC Circuits (18)
  • Amplifiers (49)
  • Arduino Engineering Projects (82)
  • Audio Projects (85)
  • Battery Chargers (76)
  • Car and Motorcycle (88)
  • Datasheets (45)
  • Decorative Lighting (Diwali, Christmas) (32)
  • DIY LED Projects (82)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (17)
  • Heater Controllers (24)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (27)
  • Infrared (IR) (39)
  • Inverter Circuits (94)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (55)
  • Mini Projects (153)
  • Motor Controller (65)
  • MPPT (7)
  • Oscillator Circuits (15)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (65)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (56)
  • Sensors and Detectors (116)
  • SG3525 IC (5)
  • Simple Circuits (72)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (39)
  • Ultrasonic Projects (12)
  • Water Level Controller (46)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results

© 2021 · Swagatam Innovations