• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / 555 IC Circuits / Input Trigger Synchronized Monostable Timer Using IC 555

Input Trigger Synchronized Monostable Timer Using IC 555

Last Updated on September 18, 2020 by Swagatam 18 Comments

Here we study a simple IC 555 based monostable circuit whose output monostable time duration starts only after the input trigger is released thus making sure that the trigger ON time duration is added with the monostable's pre-programmed ON time duration. The idea was requested by Mr. John Brogan

Technical Specifications

I would like to know if I could hire you for a very simple project. This is to help me learn circuits.

I am looking for the following type of circuit (see below). Could you let me know what it would cost to design?

There will be 4 pins on the circuit board. 2 pins on the left side of the board, 2 pins on the right.

When someone closes the circuit of the LEFT side of the board, either momentarily, or for however long they keep the circuit closed, the pins on the RIGHT side of the board close *PLUS* 2 minutes after the time the circuit on the LEFT side of the board is opened. (that’s the part I’m stuck on – how to make a circuit stay closed for “n” minutes past the time another circuit is opened.

Please let me know what you would charge to diagram this and list the parts I need to buy to make this.

Thank you!

John Brogan
Colorado

The Design

In other words, the above request demands a monostable whose output on state delay will initiate only once the input trigger is released, meaning suppose the monostable is designed to produce a delay of 2 minutes, and let's assume the input trigger hold time to be x minutes, the total delay at the output pin3 of the IC should be then = 2 minutes + "x" minutes.

The design may be simply configured by adding a PNP stage to a standard IC 555 monostable circuit.

Referring to the figure below we see a standard IC 555 monostable circuit which produces an output high for a time delay determined by R2 and C1. This initiates each time pin2 is grounded momentarily or may be for some relatively longer period of time.

However normally this would happen as soon as pin2 is grounded without considering the trigger ON duration, and we don't want this situation for the proposed design.

The issue is effectively remedied by the inclusion of the PNP device T1 across the shown position of the circuit.

As suggested in the request when the left pins are closed, T1 is allowed with a negative bias forcing it to conduct.

The above condition allows the output to go high but shorts the timing capacitor C1 via T1 emitter/cpllector so that it is unable to charge until the left pins are opened by the user.

Once the left pins are released, C1 is allowed to charge and initiate the monostable counting operation wherein the relay actuates and closes the right pins for a total duration of the set two minutes plus the duration for which the input was held closed.

Circuit Diagram

caution electricity can be dangerous

IC 555 pinout Specs

You'll also like:

  • 1.  Buzzer with Incrementing Beep Rate
  • 2.  Timer Based Cell Phone Charger Circuit
  • 3.  Poultry Feed Controller Timer Circuit
  • 4.  IC 555 Based Simple Digital Stopwatch Circuit
  • 5.  Simple Buck-Boost Converter Circuits Explained
  • 6.  Week Day Programmable Timer Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
18 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (95)
  • Datasheets (74)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (104)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (150)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (62)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz