• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Electronic Components / How to Calculate Zener Diode Resistor

How to Calculate Zener Diode Resistor

Last Updated on October 15, 2022 by Swagatam Leave a Comment

In this article we learn how to calculate and the find the value of the zener diode resistor using simple formulas.

What is a Zener Diode

Zener diodes are semiconductor devices which are used for regulating an input DC voltage to any desired output voltage. The regulated output voltage value directly depends on the value of the zener diode.

However, all zener diodes being vulnerable to high currents, strictly require a current limiting resistor to control the maximum current through the zener diode.

This resistor also decides how much maximum current the output load can acquire. Thus, the zener diode resistor must be selected in such a way that it ensures proper safety to the zener diode from excessive current, and also allows sufficient current for the output load, so that it can operate optimally.

As shown in the figure below, R1 and the zener diode D1 reduces the input voltage VIN to the desired output voltage VOUT.

caution electricity can be dangerous

The operating voltage of the zener diode is fixed by the manufacturer of the device. While selecting a zener diode we match its operating voltage with the required VOUT voltage.

Power Dissipation

Another important parameter of a zener diode is its power dissipation, which is given by the formula:

P = VOUT x IMAX

Just as VOUT is decided by the load, Imax is also determined by the load. Imax is also determined by the resistance and wattage of the resistor R1.

To be precise, VOUT and Imax are both decided by the minimum and the maximum values of the load current.

This is because, first the current has to flow through the resistor R1 before passing through the zener diode and the load. Therefore the R1 current can be expressed from the following formula:

IR = IZ + IL (Equation#1)

  • Here, IR = current through resistor R1
  • IZ = current through zener diode D1
  • IL = current through the output load

Calculating Current through Zener Diode Resistor

If we consider the input voltage VIN and the output voltage VOUT to be relatively steady and constant, the current flowing through resistor R1 will be proportional to the voltage across it (by Ohms law). This can be expressed with the following equation:

IR = ( VIN - VOUT) / R (Equation#2)

Combining (Equation#1) and (Equation#2), we get:

(VIN - VOUT) / R = IZ + IL (Equation#3)

As assumed earlier, the (VIN - VOUT) is much constant. Therefore when the load current is minimum (let's call it ILmin), the current through the zener diode will be maximum (let's call it ILmax). Substituting these factors in the above equation#3, we get:

(VIN - VOUT) / R = ILmax + ILmin (Equation#4)

If suppose we have a load that demands only maximum current, then the current through the diode will be always negligible. Therefore the above equation can be reduced to the following equation:

(VIN - VOUT) / R = ILmax (Equation#5)

The above equation is simply telling us that the resistor R1 should be selected not only to protect the diode but also to supply adequate current for the load.

Now, we can rearrange the above equation as follows:

R = (VIN - VOUT) / ILmax (Equation#6)

Once the above equation is solved and we get the value of R, we can easily calculate the power of the resistor using the following equation:

P = (ILmax)2 x R (Equation#7)

The above calculations thoroughly explains how to calculate a zener diode resistor!

Maximum Reverse Current

It is also possible for us to determine the maximum reverse current of the zener diode. This can be done by rearranging the Equation#4, and substituting it in Equation#5:

Imax = ILmax - ILmin (Equation#8)

The above equation simply illustrates that the zener diode adjusts its current dissipation and compensates for the maximum and minimum load currents.

It also illustrates that the zener diode pulls current through the resistor to generate a voltage drop across the resistor, which proportionately reduces the voltage for the load.

You'll also like:

  • 1.  Capacitor Inductor Calculations
  • 2.  Digital-to-Analog (DAC), Analog-to-Digital (ADC) Converter Circuits Explained
  • 3.  LM3915 IC Datasheet, Pinout, Application Circuits
  • 4.  High Current Transistor TIP36 – Datasheet, Application Note
  • 5.  IC LM338 Application Circuits
  • 6.  Calculating Inductors in Buck Boost Converters

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

New Posts

  • Sound Activated Remote Control Circuit
  • High Voltage DC Motor Speed Regulator Circuit
  • High Efficiency Solar Charger Circuits using Switching Regulators
  • Mobile Signal Vibrator Circuit
  • AC 220V Over Current Monitor and Cut OFF Circuit

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments


Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (118)
  • Battery Chargers (83)
  • Car and Motorcycle (96)
  • Datasheets (77)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (14)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (30)
  • Home Electrical Circuits (106)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (95)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (67)
  • Mini Projects (152)
  • Motor Controller (68)
  • MPPT (7)
  • Oscillator Circuits (25)
  • PIR (Passive Infrared) (8)
  • Power Electronics (35)
  • Power Supply Circuits (81)
  • Radio Circuits (10)
  • Remote Control (49)
  • Security and Alarm (64)
  • Sensors and Detectors (127)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (62)
  • Timer and Delay Relay (54)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz