• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos 

You are here: Home / Motor Controller / How to Control Motor with a Cell Phone

How to Control Motor with a Cell Phone

Last Updated on July 3, 2019 by Swagatam 95 Comments

The following article describes a very simple circuit idea which can be used for controlling a motor's rotational direction i.e. for moving it either clockwise or anticlockwise through alternate miss calls from your cell phone.

The Circuit Concept

I have already discussed a novel cell phone controlled remote switch circuit where the unit can be used for switching an electrical gadget through the users cell phone. The user just has to call the remote system which responds to the blank calls  and generates the required alternate switching of the connected gadget.

The same circuit has been used here also, the output is appropriately modified such that now the unit becomes suitable for toggling the rotation of a DC motor.

The circuit shown below can be used for controlling a motor rotational direction, let's try to understand it's functioning details:

The lower section of the diagram consisting of T1, T2, T3 and T4 along with the associated components forms a simple high gain audio amplifier circuit.

This circuit is used for amplifying the ringtone generated by the attached modem cell phone unit.

How it Works

The modem cell phone handset is an ordinary NOKIA 1280 cell phone which is permanently integrated with this circuit.

The above modem cell phone  uses a prepaid SIM card and thus it becomes a self contained receiver module.

When this modem cell phone is called by the owner's cell phone, its ringtone activates and gets amplified by the above explained tone amplifier stage.

The amplified signal becomes powerful enough to triggers the relay RL1.

This relay holds or remains activated as long as the call stays connected, and breaks when the call is disconnected.

RL1's N/O contact is supplied with a 12v trigger to the adjoining stage which is a FLIP/FLOP stage, made by using four NAND gates from the IC 4093.

With every alternate missed calls from the owner's cell phone, the modem cell phone signals the tone amplifier, which activates RL1, and RL1 in turn flips or flops the IC1 circuit.

The output of the flip flop is connected with a relay driver circuit which is attached with two relays RL2  in parallel. You may use a single DPDT relay also for better convenience.

The contacts of the relays are configured in such a manner that flipping them produces opposite movements for the motor that's integrated to them.

The mains supply to the relay and the motor is taken from RL1, which means the motor flips with every subsequent "missed calls" and remains activated until the call stays connected, and then halts.

The circuit can be modified in many different ways as per the users specifications.

The modem cell phone should be appropriately assigned with a particular continuous ringtone while the default ringtone should be assigned to "empty", tis will make the unit immune to unknown numbers or wrong numbers, and the owner will be the sole controller of the attached circuit and the motors.

caution electricity can be dangerous

Parts List

All resistors are 1/4w 5% CFR unless otherwise stated.

  • R1 = 22k
  • R2 = 220 OHMS
  • R3,R11,R12 = 100K
  • R4,R6,R7,R9 = 4.7K
  • R5 = 1K,
  • R8 = 2.2M
  • C1,C4,C5 = 0.22uF DISC TYPE
  • C2,C3 = 100uF/25V
  • T1,T2,T4,T5 = BC 547B
  • T3 = BC557 B
  • ALL DIODES = 1N4148
  • IC1 = 4093
  • RL1 = RELAY 12V/400 OHMS SPDT
  • RL2 = Relay DPDT 12V/400 ohms
  • L1 = small buzzer coil, small choke or similar.
  • JACK = 3.5mm AUDIO JACK
  • CELL PHONE MODEM = NOKIA 1280

Video clip showing the remote control operation of the circuit using a cellphone.

You'll also like:

  • 1.  High Wattage Brushless Motor Controller Circuit
  • 2.  Easy H-Bridge MOSFET Driver Module for Inverters and Motors
  • 3.  Make this Electric Scooter/Rickshaw Circuit
  • 4.  Remote Controlled Submersible Pump Circuit
  • 5.  How to Make Ultrasonic Remote Control Circuit
  • 6.  2 Automatic Heatsink Temperature Controller Circuit

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
95 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (26)
  • 555 IC Circuits (99)
  • 741 IC Circuits (20)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (115)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (73)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (101)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (120)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (103)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (66)
  • Mini Projects (149)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (79)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (121)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (61)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (41)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz