• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

  • 1000+ Circuits
  • Privacy Policy
  • About Us
  • Contact
  • Disclaimer
  • Videos – Circuit Test Results
You are here: Home / Electronic Components / Comparing IGBTs with MOSFETs

Comparing IGBTs with MOSFETs

Last Updated on June 20, 2019 by Swagatam 8 Comments

The post discusses the main differences between an IGBT and a MOSFeT device. Let's learn more about the facts from the following article.

Comparing IGTB with power MOSFETs

The insulated-gate bipolar transistor features a voltage drop which is significantly low when compared to a conventional MOSFET in the devices which have a voltage of higher blocking.

The n-drift region’s depth must also increase along with an increase in the rating of the blocking voltage of the IGBT and MOSFET devices; and the dropping needs to be decreased which results in a relationship which is a square relationship decrease in the forward conduction versus the device’s blocking voltage capability.

MosfetIGBT

The resistance of the n-drift region is reduced significantly decreased by introducing holes or minority carriers from the p-region which is the collector to the n-drift region during the process of the forward conduction.

But this reduction in the resistance of the n-drift region on the on-state forward voltage comes with the following properties:

How IGBT Works

The reverse flow of the current is blocked by the additional PN junction. Thus, it can be deducted that IGBTs are not able to conduct in the reverse direction like the other device such as MOSFET.

Thus, an additional diode which is known as freewheeling diode is placed in the bridge circuits where there is a need for the flow of reverse current.

These diodes are placed in parallel to the IGBT device in order to conduct the current in reverse direction. The penalty in this process was not as severe as it was assumed in the first place, because the discrete diodes give very high performance than the MOSFET’s body diode since IGBT usage is dominated at the higher voltages.

The rating of reverse bias of the n-drift region to the collector p-region diode is mostly of tens of volts. Thus, in this case, an additional diode needs to be used if the reverse voltage is applied by the circuit application to the IGBT.

A lot of time is taken by the minority carriers in order to enter, exit, or recombine which are injected into the n-drift region at every turn on and turn off. Thus, this results in switching time to be longer and hence significant loss in the switching in comparison to power MOSFET.

The on-stage drop of voltage in forward direction in the IGBT devices showcases a very different behavioral pattern when compared to the power devices of MOSFETS.

How Mosfets Work

The voltage drop of the MOSFET can be easily modeled in the form of a resistance, with the voltage drop being in proportion to the current. In contrast to this, the IGBT devices consist of a voltage drop in the form of a diode (mostly in the range of 2V) which increases only with the respect to the log of the current.

In case of blocking voltage of smaller range, the resistance of MOSFET is lower which means that the choice and selection between the devices of IGBT and power MOSFETS is based on the blocking voltage and the current which is involved in any of the specific application along with the various different characteristics of switching which have been mentioned above.

IGBT is Better than Mosfet for High Current Applications

In general, IGBT devices are favored by high current, high voltage, and low switching frequencies while on the other hand the MOSFET devices are mostly favored by the characteristics such as low voltage, high switching frequencies, and low current.

By Surbhi Prakash




Previous: Bipolar Transistor Pin Identifier Circuit
Next: 10/12 watt LED Lamp with 12 V Adapter

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

You'll also like:

  • 1.  IC 4060 Pinouts Explained
  • 2.  IC LM321 Datasheet – IC 741 Equivalent
  • 3.  What’s Ripple Current in Power Supplies
  • 4.  How a Potentiometer (POT) Works
  • 5.  BJT 2N2222, 2N2222A Datasheet and Application Notes
  • 6.  How Electret Microphones Work – Full Tutorial and Diagram

Please Subscribe (Only if you are Genuinely Interested in our Newsletters)


 

Reader Interactions

Comments

    Your Comments are too Valuable! But please see that they are related to the above article, and are not off-topic! Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Search Related Posts for Commenting

  2. sedigh hosein says

    hi dear sir i want to use a transformer with half volt and 2000 amp in output or in the secondary for a lab
    so that i have to put a igbt or any kind of electronic other key on the secondary
    is there any solution to control this voltage and current ?

    Reply
    • Swagatam says

      Hi Sedigh, I don’t think any circuit can control 2000 amp without dissipating a lot of heat…the best way is to modify the transformer winding to get 0.5 V at the output.

      Reply
  3. matt says

    hi swag… Can I use an Igbt with power dissipation of 100w at 100 degrees Celsius in place of a mosfet with power dissipation of 1890w at 25 degrees Celsius.. The two transistors I’m comparing are SGL160N60 and Ixfb100n50.. I want to use any of them in designing a 3phase 2.2kw vfd

    Reply
    • Swag says

      Hi Matt, 100 degree should not be allowed on any device and must be restricted below 50 degrees through proper heatsinking and fan cooling.

      So we can compare the currents at 25 degree dissipation which shows the mosfet having 100 amp and the IGBT 160 amps.

      So definitely the the IGBT looks better equipped, you can use the IGBT

      Reply
      • Matt says

        Hi swag thanks for the quick response. Please does power dissipation matters between the two transistors? can I replace the mosfet with the Igbt irrespective of the fact that the mosfet has high power dissipation more than the igbt…thank

        Reply
        • Swag says

          Thanks Matt, power dissipation is an individual feature of transistors which can be controlled with a heatsink, so it does not matter as long as the current and voltage specs are correctly matched, you can disregard this and replace the devices with each other and configure them as per their specifications,.

          Reply
  4. Oladipo Segun says

    Can I swap Mosfets with IGBT in an smps inverter that uses ir2110 directly, no circuit modifications

    Reply
    • Swagatam says

      yes you can do it…

      Reply


  5. COMMENT BOX IS MOVED AT THE TOP


Primary Sidebar

Electronic Projects Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (51)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (92)
  • 741 IC Circuits (18)
  • Amplifiers (48)
  • Arduino Engineering Projects (82)
  • Audio Projects (83)
  • Battery Chargers (75)
  • Car and Motorcycle (87)
  • Datasheets (44)
  • Decorative Lighting (Diwali, Christmas) (31)
  • DIY LED Projects (81)
  • Electronic Components (96)
  • Electronic Devices and Circuit Theory (34)
  • Electronics Tutorial (99)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Games (2)
  • GSM Projects (9)
  • Health Related (16)
  • Heater Controllers (23)
  • Home Electrical Circuits (98)
  • Incubator Related (6)
  • Industrial Electronics (25)
  • Infrared (IR) (39)
  • Inverter Circuits (93)
  • Laser Projects (10)
  • LM317/LM338 (21)
  • LM3915 IC (24)
  • Meters and Testers (52)
  • Mini Projects (152)
  • Motor Controller (64)
  • MPPT (7)
  • Oscillator Circuits (12)
  • PIR (Passive Infrared) (8)
  • Power Electronics (32)
  • Power Supply Circuits (64)
  • Radio Circuits (9)
  • Remote Control (46)
  • Security and Alarm (54)
  • Sensors and Detectors (114)
  • SG3525 IC (4)
  • Simple Circuits (72)
  • SMPS (30)
  • Solar Controllers (60)
  • Timer and Delay Relay (51)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (36)
  • Ultrasonic Projects (12)
  • Water Level Controller (45)

Follow Homemade Circuits

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora

Feeds

Post RSS
Comment RSS

Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2021 · Swagatam Innovations

We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok