• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Car and Motorcycle / Infrared Remote Control Safe Lock Circuit

Infrared Remote Control Safe Lock Circuit

Last Updated on June 1, 2020 by Swagatam 15 Comments

caution electricity can be dangerous

A simple, cheap yet highly effective infrared remote control safe lock circuit can be studied in the following post.

infrared safe lock circuit

Using IC LM567

The LM567 IC is one of my favorites simply because it's too versatile, and becomes applicable in most of the crucial circuit concepts through hassle free configurations.

One such crucial yet simple IR remote control receiver application can be seen in the above diagram, which activates only through a unique predetermined frequency as set by R1/C1 in the circuit.

The above concept can be used in automotive security applications for locking the safe/vault through a uniquely set frequency code.

In the shown circuit R1/C1 determines the latching frequency of the unit, which may be calculated using the following formula:

f = 1/R1C1, which constitutes to be 100kHz for the shown values of R1, C1.

Pin3 which is the receptor pinout of the IC is configured with a IR diode for receiving an incoming tone locked frequency set at the matching 100kHz frequency.

How it Works

When such a matching frequency is detected at pin3 of the IC, pin8 responds and becomes low momentarily activating the transistor latch.

The transistor and relay latch together to acknowledge the response and open the safe lock for the user.

Any other frequency which may not coincide with the set R1/C1 value is simply rejected by the IC keeping the vault secured and locked, thus the system becomes extremely foolproof and safe from potential bike thieves.

pin1 output from the IC can be configured with an audio amplifier and buzzer in case an audio signal is felt essential during the remote control activation.

However this may require the transmitter to be equipped with a modulated audio signal over the carrier base frequency.

A very simple complementing IR remote handset circuit may be seen below:

It's a simple two transistor R/C based oscillator, whose frequency is determined by the shown R and C values and coincidentally here too the formula is identical to its Rx counterpart, that is:

f = 1/RC

Thus the Tx circuit frequency becomes much easier to calculate and match with the LM567 receiver circuit discussed in the previous section.

For activating the Rx circuit, the above Tx circuit IR diode emission simply needs to be focused on the IR receiver diode of the Rx unit. This instantly unlocks the Rx circuit for the intended results.

The  infrared remote control security lock circuit can be used for locking a multitude of other security devices which require a foolproof uniquely coded locking operations.

You'll also like:

  • 1.  Detecting Static Human with PIR
  • 2.  Motorcycle Regulator, Rectifier Tester Circuit
  • 3.  GSM Pump Motor Controller Circuit using Arduino
  • 4.  RF Remote Control Encoder and Decoder Pinouts Explained
  • 5.  Controlling LED Strip Light ON/OFF and Brightness with any Remote Control
  • 6.  Cheap Cellphone Controlled Water Pump for Farmers

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
15 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (120)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz