• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Power Supply Circuits / How Switch Mode Power Supply (SMPS) Circuits Work

DIY Circuits | Learn Basics | Arduino Coding




How Switch Mode Power Supply (SMPS) Circuits Work

Last Updated on January 8, 2024 by Swagatam 58 Comments

SMPS is the acronym of the word Switch Mode Power Supply. The name clearly suggests that the concept has something or entirely to do with pulses or switching of the employed devices. I have explained how SMPS adapters work for converting mains voltage to a lower DC voltage.

Advantage of SMPS Topology

In SMPS adapters the idea is to switch the mains input voltage into the primary winding of a transformer so that a lower value DC voltage may be obtained at the secondary winding of the transformer.

However the question is, the same can be done with an ordinary transformer, so what is the need of such complicated configuration when the functioning can be simply implemented though ordinary transformers?

Well, the concept was developed precisely for eliminating the use of heavy and bulky transformers with much efficient versions of SMPS power supply circuits.

Though the principle of operation is quite the similar, the results are hugely different.

Our mains voltage is also a pulsating voltage or an AC which is normally fed into the ordinary transformer for the required conversions, but we cannot make the transformer smaller in size even with current as low as 500 mA.

The reason behind this is the very low frequency involved with our AC mains inputs.
At 50 Hz or 60 Hz, the value is tremendously low for implementing them into high DC currents outputs using smaller transformers.

This is because as the frequency decrease, the eddy current losses with the transformer magnetization increases, which results in huge lose of current through heat and subsequently the whole process becomes very inefficient.

To compensate the above loss, relatively larger transformer cores are involved with relevant degree of wire thickness, making the entire unit heavy and cumbersome.

A switch mode power supply circuit tackles this issue very cleverly.

If lower frequency increases eddy current losses, means an increase in the frequency would do just the opposite.

Meaning if the frequency is increased, the transformer could be made much smaller yet would provide higher current at their outputs.

That's exactly what we do with an SMPS circuit. So I have explained the functioning with the following points:

How SMPS adapters work

In a switch mode power supply circuit diagram, the input AC is first rectified and filtered to produce relevant magnitude of DC.

The above DC is applied to an oscillator configuration comprising a high voltage transistor or a mosfet, rigged to a well dimensioned small ferrite transformer primary winding.

The circuit becomes a self oscillating type of configuration which starts oscillating at some predetermined frequency set by other passive components like capacitors and resistors.

The frequency is usually above 50 Khz.

This frequency induces an equivalent voltage and current at the secondary winding of the transformer, determined by the number of turns and the SWG of the wire.

Due the involvement of high frequencies, eddy current losses become negligibly small and high current DC output becomes derivable through smaller ferrite cored transformers and relatively thinner wire winding.

However the secondary voltage will also be at the primary frequency, therefore it is once again rectified and filtered using a fast recovery diode and a high value capacitor.

The result at the output is a perfectly filtered low DC, which can be used effectively for operating any electronic circuit.

In modern versions of SMPS, hi-end ICs are employed instead of transistors at the input.
The ICs are equipped with a built in high voltage mosfet for sustaining high frequency oscillations and many other protection features.

What Built-in Protections do SMPS Have

These ICs have adequate built in protection circuitry like avalanche protection, over heat protection and output over voltage protection and also a burst mode feature.

Avalanche protection ensures that the IC does not get damaged during power switch ON current in rush.

The over heat protection ensures that the IC is automatically shuts off if the transformer is not wound correctly and draws more current from the IC making it dangerously hot.

The burst mode is an interesting feature included with the modern SMPS units.

Here, the output DC is fed back to a sensing input of the IC. If due to some reason, normally due to wrong secondary winding or selection of resistors the output voltage rises above a certain predetermined value, the IC shuts off the input switching and skips the switching into intermittent bursts.

This helps to control the voltage at the output and also the current at the output.

The feature also ensures that if the the output voltage is adjusted to some high point and the output is not loaded, the IC switches to burst mode making sure that the unit is operated intermittently until the output gets adequately loaded, this saves power of the unit when in standby conditions or when the output is not operative.

The feedback from the output section to the IC is implemented via an opto-coupler so that the output remains well aloof from the input high voltage mains AC, avoiding dangerous shocks.

You'll also like:

  • LM337 maximum ratingsHow IC LM337 Works: Datasheet, Application Circuits
  • How Buck-Boost Circuits Work
  • high voltage constant current source circuitHigh Voltage Constant Current Source Circuit
  • 600V regulator connections600 V DC Voltage Regulator Circuit Module

Filed Under: Power Supply Circuits Tagged With: Circuits, Mode, Power, SMPS, Supply, Switch

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « Motor Protection Circuits – Over Voltage, Over Heat, Over Current
Next Post: Simple 12V, 1A SMPS Circuit »

Reader Interactions

Comments

Ali Bin Fiaz says:
November 14, 2014 at 4:24 am

I wanted to make a 48 volt SMPS. Kindly share schematic for 48 volts supply.

Reply
Deepak Saxena says:
March 28, 2014 at 5:23 am

I want 12 volt 5 amp built circuit for AC to DC in regular quantity. deepakfromagra@hotmail.com

Reply
Hemant Bhayana says:
December 7, 2013 at 3:40 am

hi swagtham

Can I have your phone no. pls

Regards

Reply
Swagatam says:
December 7, 2013 at 6:57 am

Hi Hemant,

I am sorry a telephonic conservation won't be possible, you can contact me via the email IDs given in the "contact" link below

Reply
Swagatam says:
October 24, 2013 at 2:17 pm

Not much difference as far as efficiency is concerned, they just facilitate different PCB designs pinout arrangement, and other dimension considerations according to me.

Reply
raj says:
October 11, 2013 at 8:03 pm

i am beginner…and i am planning to start manufactoring mobile chargers.can u please suggest me some way to learn these circults and which circults i should prefer

Reply
Swagatam says:
October 12, 2013 at 10:29 am

The coil is the main component which needs proper dimensioning, and is most difficult to design, it's better to buy one ready-made sample and copy it as it is.

Reply
Swagatam says:
August 13, 2013 at 5:03 am

Hi Shweta,

It is a regular SMPS having multiple voltage outputs.

The ferrite transformer involved with PC smps have many taps and winding which are very complicated, so i am sorry it would be difficult for me to figure out and present the date and the configurations..

Reply
Back to Newest

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

circuit simulator image



Subscribe to get New Circuits in your Email



Categories

  • Arduino Projects (93)
  • Audio and Amplifier Projects (133)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (85)
  • Datasheets and Components (109)
  • Electronics Theory (149)
  • Energy from Magnets (27)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (20)
  • Health related Projects (27)
  • Home Electrical Circuits (13)
  • Indicator Circuits (16)
  • Inverter Circuits (95)
  • Lamps and Lights (159)
  • Meters and Testers (71)
  • Mini Projects (28)
  • Motor Controller (68)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (91)
  • Remote Control Circuits (50)
  • Renewable Energy (12)
  • Security and Alarm (64)
  • Sensors and Detectors (106)
  • SMPS and Converters (34)
  • Solar Controller Circuits (60)
  • Temperature Controllers (43)
  • Timer and Delay Relay (49)
  • Voltage Control and Protection (42)
  • Water Controller (36)
  • Wireless Circuits (30)





Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap



People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Stack Exchange
  • Linkedin



Recent Comments

  • Swagatam on 7 Best Touch Sensor Switch Circuits Explored
  • Swagatam on Tuned Radio Frequency (TRF) Receiver Circuits
  • Swagatam on Automatic Street Light Dimmer Circuit
  • Swagatam on Electronic Circuit Projects, Tutorials, and Practical Engineering Solutions
  • Ghulam Mohio Din on Automatic Street Light Dimmer Circuit

© 2026 · Swagatam Innovations