• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

New Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos | Circuits for Beginners | Basic Circuits | Hobby Projects | Transistor Circuits | LED Drivers 

You are here: Home / Heater Controllers / Heater Controller Circuit Using Push-Buttons

Heater Controller Circuit Using Push-Buttons

Last Updated on July 15, 2019 by Swagatam 20 Comments

caution electricity can be dangerous

Controlling a heavy electrical appliance with push buttons can be extremely convenient since it allows a solid state approach for operating the parameter both ways up and down by mere push of the relevant buttons. Here we discuss a heat controller circuit using a set of push buttons and PWMs.

Using a Digital Push Button Controller Module

In one of my earlier posts I designed an interesting universal push button controller circuit which could be implemented with any related appliance for achieving a two-way push button control for the particular appliance.We implement the same concept for the present application too.

Let's try to understand the above shown push-button heater controller circuit in detail:

How it Works

The design can be divided into two main stages, the LM3915 stage which becomes responsible for creating an up/down sequentially varying resistances in response to the two push button's pressing, and the transistorized astable multivibrator stage which is positioned to respond to the varying resistances from the LM3915 outputs and generate a correspondingly varying PWMs. These PWMs are finally utilized for controlling the connected heater appliance.

You may be already knowing that the IC LM3915 is designed for producing a sequentially incrementing output across its pins 1 to 18 to 10, in response to an incrementing voltage level at its pin#5.

We take the advantage of this feature and employ a charging/discharging capacitor at its pin#5 via push buttons for implementing the required forward/reverse sequentially running logic low across the mentioned pinouts.

When SW1 is pushed ON, the 10uF capacitor slowly charges causing a rising potential at pin#5 of the IC which in turn enforces a jumping logic low from pin#1 towards pin#10.

The sequence stops as soon as the push button is released, now to force the sequence backwards SW2 is pressed which now begins discharging the capacitor, causing a reverse jumping of the logic low from pin#10 towards pin#1 of the IC.

The above action is indicated by the chasing red light across the relevant output pins in the same order.

However the actual implementation of the proposed push button controlled heater circuit is carried out by the introduction of the PNP transistor astable PWM generator circuit.

The PWM Generator

This astable circuit generates an approximately 50% duty cycle as long as the resistor capacitor values across the bases of the transistors are at an equilibrium, that is the values are equal and balanced, however if any of these components values are changed, a corresponding amount of change is introduced across the collectors of the devices, and the duty cycle changes at the same proportion.

We exploit this feature of the circuit and integrate one of the bases of the transistor with the sequencing outputs of the LM3915 via an array of calculated resistors which correspondingly change the base resistance of the concerned transistor in response to the pressing of SW1 or SW2.

The above action produces the required varying PWMs or duty cycles across the transistor collectors, which may seen hooked up with a triac and the heater appliance.

The varying PWMs enable the triac and the appliance to conduct or operate under the induced amount ON or OFF switching creating an equivalent amount of increase or decrease in the heat of the appliance.

You'll also like:

  • 1.  How to Repair Mosquito Swatter Bats
  • 2.  Temperature Controller Circuit for Reptile Racks
  • 3.  How to Design an Induction Heater Circuit
  • 4.  Speed Dependent Brake Light Circuit
  • 5.  How Crank Flashlights Work
  • 6.  Emergency Incubator Heater Circuit with Battery Charger

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Have Questions? Please Comment below to Solve your Queries! Comments must be Related to the above Topic!!

Subscribe
Notify of
20 Comments
Newest
Oldest
Inline Feedbacks
View all comments

Primary Sidebar

Calculators

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Arduino Engineering Projects (83)
  • Audio and Amplifier Projects (114)
  • Battery Chargers (82)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (33)
  • Electronic Components (100)
  • Electronic Devices and Circuit Theory (36)
  • Electronics Tutorial (116)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (13)
  • GSM Projects (9)
  • Health Related (20)
  • Heater Controllers (29)
  • Home Electrical Circuits (102)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LED and Light Effect (93)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (65)
  • Mini Projects (148)
  • Motor Controller (67)
  • MPPT (7)
  • Oscillator Circuits (26)
  • PIR (Passive Infrared) (8)
  • Power Electronics (34)
  • Power Supply Circuits (77)
  • Radio Circuits (10)
  • Remote Control (48)
  • Security and Alarm (61)
  • Sensors and Detectors (120)
  • SG3525 IC (5)
  • Simple Circuits (75)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (16)
  • Water Level Controller (45)

Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator

© 2023 · Swagatam Innovations

wpDiscuz