• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Get free circuit help 24/7

Circuits for Beginners | Basic Circuits | LED Driver | Hobby Circuits | Transistor Circuits

New-Projects | Privacy Policy | About us | Contact | Disclaimer | Copyright | Videos

You are here: Home / Mini Projects / Simple Greenhouse Temperature Regulator Circuit

Simple Greenhouse Temperature Regulator Circuit

Last Updated on April 15, 2019 by Swagatam 7 Comments

ask questions through comments

The post discusses a simple electronic temperature regulator circuit which could be specifically used for regulating greenhouse temperatures. The idea was requested by Mr. Leo.

Technical Specifications

I am looking for a guide to build a basic temp regulator circuit. I have a solar charger bought from lidl,(SLS 2200 A1) which has outputs for 5, 7.5 & 9.5v DC 0.5A. it will be used for soil heating in a greenhouse.

My idea is to use black drip irrigation pipe as a 'solar panel' to heat the water and with a low volume pump regulate the temp under a propagation tray. Any advise is greatly appreciated.

I have seen similar setups for egg incubators , fridge temp controls, etc. but need it at an allotment, so only power source is small panel. also if possible would it be possible to increase capacity of internal battery and have a heating element added.

Thank once again.

Leo

Introduction

Before getting into the main circuit concept, it would be interesting to learn regarding a few of the parameters expressed in the above request, as given below:

What is "black" drip irrigation:

We all probably have heard a lot about drip irrigation, a method in which water is fed to the crops across the entire allotted field through a network of narrow pipe lines wherein water is allowed to drip directly at the bottom of the stem of the crop for a sustained period of time. The method helps to save water and allows the water to reach the crucial areas such as the roots of the crop resulting in a better growth and efficiency.

Here an identical approach is implemented but the conventional pipes are replaced with black coiled PVC pipes. The back coiled pipe helps to absorb the heat from the sun rays naturally and allow the water passing through it to become warm naturally without depending on costly artificial utility electricity. The warm water ultimately helps to heat up the soil deep inside for acquiring the intended greenhouse effects.

What's a Propagation Tray:

These could be arrays of plastic plantation pots arranged in a large tray like fashion for allowing deeper soil content to the seedlings over minimal spaces, it's specifically designed for optimizing indoor plantations.

What's Allotment:

It may refer to a small garden or a plot of land as explained here:

https://en.wikipedia.org/wiki/Allotment_%28gardening%29

The Solar Panel: The specified solar panel is a self contained unit which includes a solar panel with outputs at 5,
7.5 & 9.5v DC (0.5A). It also includes a 4-step charge indicator circuit and most interestingly it includes a built-in 2200mAH Li-ion battery so that you don't have to bother about external battery integrations, rather would be able to use the existing facility under overcast conditions.

 

Basic Requirement for the Green House Effect

Now let's return to the actual requirement of the proposed greenhouse temperature regulator circuit, the idea here is to sustain a raised temperature of the soil by 10 to 20 degrees Celsius above the atmospheric temperature for boosting or enhancing seed germination.

Because seeds normally germinate faster in soils that are warmer than the atmosphere, which in turn results in an initial stronger root development instead of bigger leaf development.

Generally, heat mats are used below the propagation trays for heating the soil but in the present application the drip water is itself heated and used for generating the same results, which looks much impressive, since heat mats could at times get messy causing sparks, fire or over heating of the soil (if the attached thermostat fails).

Nevertheless, the electronic temperature controller circuit discussed below could be used with any heating system, including heat mats.

In the proposed design, the natural heating of the water within the black pipes is aided by an external heating element until the temperature of the water reaches the optimal point. As soon as this threshold is sensed the heater is switched off by the regulator circuit and held at that position until the temperature falls back to a relatively cooler level.

 

Parts List

D1 = 1N4148,

A1---A3 = 3/4 LM324,

Opto = 4n35

Circuit Operation

Referring to the diagram above which is actually a simple temperature controller circuit, could well be used for regulating the soil temperature in the proposed greenhouse application.

Here the temperature sensor D1 is our very own "garden" diode (no pun intended ) 1N4148 which translates every one degree (C) rise in the ambient temperature into a 2mV drop across itself.

The opamp A2 is specifically arranged to detect this change in voltage across D1 and feed the difference to A3 such that the result illuminates the LED inside the attached opto coupler IC.

The threshold at which the above action takes place could be preset with the help of P1.

The output of the opto is connected with a NPN driver stage which is responsible for switching off the heater as soon as the above threshold is reached.

The sensor and the heater may be placed across any desired position, as per the user preference. For example the heater could be positioned below the propagation tray, or inside the water tank from where the water is being supplied to the black pipes.

On same grounds the sensor may be placed anywhere around, could be below the propagation trays, inside the soil, inside the pipe or simply inside the water tank.

The capacity of the unit could be upgraded as per the application, simply by employing a heavier rated solar panel and by replacing the TIP122 with a higher rated mosfet. The heater may also be upgraded as per the requirements.

get free help for circuit diagrams

You'll also like:

  • 1.  Build this Mosquito Bat without Battery
  • 2.  Simplest 100 Watt LED Bulb Circuit
  • 3.  Bridged Amplifier Circuit using LM380 Circuit
  • 4.  4 Simple VU Meter Circuits Explained
  • 5.  Simple Timer Circuit Using IC 4060
  • 6.  Simple Ultrasonic Sound Sensor Alarm Circuit using Opamp

About Swagatam

I am an electronic engineer (dipIETE ), hobbyist, inventor, schematic/PCB designer, manufacturer. I am also the founder of the website: https://www.homemade-circuits.com/, where I love sharing my innovative circuit ideas and tutorials.
If you have any circuit related query, you may interact through comments, I'll be most happy to help!

Subscribe for the Latest Posts


 

Reader Interactions

Comments

    Have Questions? Please post your comments below for quick replies! Comments should be related to the above artcile Cancel reply

    Your email address will not be published. Required fields are marked *

  1. Leandros Komninos says

    July 20, 2014 at 1:52 pm

    Oh, here's an additional thougth for this setup; can there be an aditional set of temp/humidity sensors, and another pump setup as a spray. this would keep the humidity inside the greenhouse ideal. This seems like a setup that might be worth you patenting!

    Reply
    • Swagatam says

      July 21, 2014 at 4:39 am

      OK great. Let me do some thinking, I'll get back to you soon with the required data.

      Patenting is a good idea, but the procedures are so tedious, it's worth only if it guarantees some good source of income,
      anyway appreciate your suggestion! thanks

      Reply
  2. Leandros Komninos says

    July 20, 2014 at 1:48 pm

    Found one on ebay, these are the detail tehy supply:
    1 x RS-360SH Pumping motor
    Simple gear-type pumping model, usually used for aquarium, DIY model etcs
    Diameter: 2.7 cm
    Length: 5.2 cm
    Out of the water hole diameter: 4 mm
    Rated voltage: 7.2V
    Suitable for voltage: 3v-12v DC (marked with a red dot that Terminal is positive)

    Seems ideal, but what do you think?. Still looking for a valve system, don't know where to begin!?!? i guess miniture butterfly actuators would be overkill for this.

    Reply
  3. Leandros Komninos says

    July 7, 2014 at 6:57 am

    not sure what valve system? but will look at some model shops for specifics.

    Reply
    • Swagatam says

      July 7, 2014 at 3:56 pm

      OK, no problem!

      Reply
  4. Leandros Komninos says

    July 5, 2014 at 7:17 am

    Black irrigation pipe:
    The GARDENA Supply Pipe 4.6 mm (3/16") is the supply pipe for Drip Heads and Spray Nozzles. It is UV-resistant and impervious to light, thereby guaranteeing long use. It can be installed above and below ground. The length of the pipe is 15 metres.

    I think you have de-cyphered the other references. If possible could two additions be made.
    1) a low volume/flow pump will be needed to circulate the heated water, as convection will not be enough.
    2) a simple valve system which isolates a hot water system from the cold. ( hot would be the pipe run on outside of greenhouse frame, the cold from a 100 litre water butt.)

    Reply
    • Swagatam says

      July 5, 2014 at 11:42 am

      Yes the additions could be done, please provide the voltage and amp specs of the low volume pump and the valve system, and if possible also provide the type of valve system you would want to use, may be by a code number etc.just as you have provided for the solar panel.

      Reply

Primary Sidebar



Categories

  • 3-Phase Power (15)
  • 324 IC Circuits (19)
  • 4017 IC Circuits (52)
  • 4060 IC Circuits (25)
  • 555 IC Circuits (98)
  • 741 IC Circuits (19)
  • Amplifiers (59)
  • Arduino Engineering Projects (83)
  • Audio Projects (94)
  • Battery Chargers (83)
  • Car and Motorcycle (94)
  • Datasheets (46)
  • Decorative Lighting (Diwali, Christmas) (32)
  • DIY LED Projects (89)
  • Electronic Components (97)
  • Electronic Devices and Circuit Theory (35)
  • Electronics Tutorial (109)
  • Fish Aquarium (5)
  • Free Energy (34)
  • Fun Projects (12)
  • GSM Projects (9)
  • Health Related (19)
  • Heater Controllers (28)
  • Home Electrical Circuits (100)
  • How to Articles (20)
  • Incubator Related (6)
  • Industrial Electronics (28)
  • Infrared (IR) (40)
  • Inverter Circuits (98)
  • Laser Projects (12)
  • LM317/LM338 (21)
  • LM3915 IC (25)
  • Meters and Testers (64)
  • Mini Projects (156)
  • Motor Controller (66)
  • MPPT (7)
  • Oscillator Circuits (24)
  • PIR (Passive Infrared) (8)
  • Power Electronics (33)
  • Power Supply Circuits (74)
  • Radio Circuits (9)
  • Remote Control (47)
  • Security and Alarm (61)
  • Sensors and Detectors (118)
  • SG3525 IC (5)
  • Simple Circuits (74)
  • SMPS (29)
  • Solar Controllers (60)
  • Timer and Delay Relay (53)
  • TL494 IC (5)
  • Transformerless Power Supply (8)
  • Transmitter Circuits (40)
  • Ultrasonic Projects (14)
  • Water Level Controller (45)


Circuit Calculators

  • AWG to Millimeter Converter
  • Battery Back up Time Calculator
  • Capacitance Reactance Calculator
  • IC 555 Astable Calculator
  • IC 555 Monostable Calculator
  • Inductance Calculator
  • LC Resonance Calculator
  • LM317, LM338, LM396 Calculator
  • Ohm’s Law Calculator
  • Phase Angle Phase Shift Calculator
  • Power Factor (PF) Calculator
  • Reactance Calculator
  • Small Signal Transistor(BJT) and Diode Quick Datasheet
  • Transistor Astable Calculator
  • Transistor base Resistor Calculator
  • Voltage Divider Calculator
  • Wire Current Calculator
  • Zener Diode Calculator


You can also Chat with me here:

Facebook
Twitter
YouTube
Instagram
My Facebook-Page
Quora



© 2022 · Swagatam Innovations

We use cookies on our website to give you the best experience.
Cookie settingsAccept All
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Please visit the Privacy Policy Page for more info.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT