• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Inverter Circuits / How to Interface Arduino PWM with any Inverter

How to Interface Arduino PWM with any Inverter

Last Updated on August 3, 2020 by Swagatam 4 Comments

In this post I have explained how to interface an existing Arduino PWM signal with any inverter to convert it into a sine wave equivalent inverter. The idea was requested by Mr. Raju Visshwanath

Table of Contents
  • Technical Specifications
  • The Design
  • Circuit Operation

Technical Specifications

I am in need of following inverter circuit designs:

Single phase DC to AC inverter. Input 230 VDC. PWM signals will be sent from Arduino Uno.

Three phase DC to AC inverter. Input 230 VDC. PWM signals will be sent from Arduino Uno.

Can you please let me know your estimated service charges, lead time and payment terms?

Thank you,
Raju Visshwanath

 UPDATE:

Please also refer to this article which explains how to build a simple pure sine wave inverter circuit using Arduino using SPWM......Full Program code also included....

The Design

As per the request the first diagram below shows a single phase PWM sine wave inverter using an Arduino feed for the PWMs.

The design looks pretty simple, the 4047 IC is configured as a totem pole astable for generating the basic 50 Hz or 60 Hz frequency.

This frequency drives the two power BJ transistor stages alternately at the specified frequency rate.

The transistors could be replaced with IGBTs for getting better efficiency, but mosfets should be avoided as these may require special attention while designing the PCB, and additional buffer BJT stages to prevent heating up of the mosfets from possible hidden stray inductance or harmonics.

arduino2Binverter2Bcircuit

Circuit Operation

In the above diagram P1 and C1 determine the frequency of the astable which can be adjusted by suitably setting up P1 using a frequency meter for the intended inverter operating frequency.

T1 and the associated components which stabilize a fixed 9V for the IC 4047 may be eliminated if the selected inverter operating voltage is not over 15V, however higher voltage up to 60V could be tried and is recommended for achieving a compact and a more powerful inverter design.

The PWM from the Arduino is applied across voltage divider networks over the two outputs of the IC via reverse biased diodes which make sure that only the negative pulses of the PWMs interact with the power stages and chop their conduction appropriately.
As a result of these PWM chopping effect, the induced current inside the transformer is also correspondingly shaped for achieving the intended PWM sinewave stepped up mains voltage at the secondary of the transformer.

The PWM frequency from the Arduino must be set at around 200 Hz, if a programmed 50 Hz totem pole is available from the Arduino then the IC4047 can be entirely eliminated and the signals can be integrated directly with R2, R3 left side ends.

 

You'll also like:

  • 1.  Universal H-Bridge Circuit Module
  • 2.  Sine Wave Inverter using Bubba Oscillator Circuit
  • 3.  Convert Audio Amplifier into Pure Sinewave Inverter
  • 4.  Pure Sine Wave Inverter Circuit Using IC 4047
  • 5.  How an Inverter Functions, How to Repair Inverters – General Tips
  • 6.  3 Best Transformerless Inverter Circuits

Filed Under: Inverter Circuits Tagged With: Arduino, Interface, Inverter, PWM

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « Simple Digital Stopwatch Circuit (4-Digit)
Next Post: Making a Strong RF Discharge Circuit »

Reader Interactions

Comments

  1. a rahman says

    June 10, 2020 at 5:31 am

    would you mind helping me by sending me the details and the whole circuit diagrams of pure sine wave inverter 12vdc to 220vac?
    if you wouldn’t please send to my email

    Reply
    • Swagatam says

      June 10, 2020 at 9:18 am

      you can try this:
      Arduino Pure Sine Wave Inverter Circuit with Full Program Code

      Reply
  2. Atton Risk says

    February 17, 2017 at 11:29 am

    This can kind of all be done using software such as SPWM on github

    Reply
  3. Amjad Ali says

    April 3, 2015 at 6:29 am

    without feedback and SPWM, sine wave and regulated output doesn't seem viable 🙁 very difficult without MCU or baba Oscillator with CD4047BC Monostable/Astable Multivibrator diffidently impossible.

    Reply

Need Help? Please Leave a Comment! We value your input—Kindly keep it relevant to the above topic! Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar




Subscribe to New Posts

Categories

  • Arduino Projects (89)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (83)
  • Datasheets and Components (104)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (14)
  • Inverter Circuits (88)
  • Lamps and Lights (142)
  • Meters and Testers (69)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (27)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (101)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (38)
  • Water Controller (36)

Tags

AC Alarm Amplifier Application Arduino Automatic Battery Charger Circuits Control Controlled Controller Current Datasheet DC Detector Digital Driver Electronic Explained Explored Generator High Indicator Inverter Lamp LED Light Meter Motor Power Regulator Remote Sensor Simple Single Solar Supply Switch Timer Transistor Voltage Water Watt Working




Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap




People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin



  • Recent Comments

    • Swagatam on Over Current Cut-off Power Supply Using Arduino
    • Swagatam on 10 Useful Active Filter Circuit Diagrams Explored
    • Swagatam on Treadmill Motor Speed Controller Circuit
    • Swagatam on IC 741 Power Supply Circuits
    • Swagatam on Simple Capacitive Discharge Ignition (CDI) Circuit

    © 2025 · Swagatam Innovations