• Skip to main content
  • Skip to primary sidebar

Homemade Circuit Projects

Need circuit help? Post them in the comments! I've answered over 50,000!

Blog | Categories | About | Contact | Calculators-online
You are here: Home / Battery Charger Circuits / High Voltage Battery Charger Circuit

High Voltage Battery Charger Circuit

Last Updated on August 24, 2021 by Swagatam 62 Comments

In this post I have explained a simple automatic High Voltage Battery Charger Circuit which can be used for an automatic charging control of any preferred high voltage battery bank such as a 360V battery bank. The idea was requested by "resonance".

Table of Contents
  • Circuit Diagram
  • The Design
  • Preset Adjustment

Circuit Objectives and Requirements

  1. I found all your circuit and projects interesting but please I need a special assistance.
  2. I want to build a Low and high battery full cutoff that can handle about 360VDC (30 Batteries in series) such that when battery is full at 405VDC charging Voltage will cutoff and when battery drop to like 325VDC it also cutoff battery low.
  3. Please, do share this experience with me.

Circuit Diagram

warning message: electricity is dangerous, proceed with caution

The Design

The figure above shows a straightforward configuration for achieving the proposed automatic high voltage battery charger circuit in the order of 360V.

The idea is based on the standard opamp based comparator principle, which is also implemented in many of the earlier 741 based battery charger circuits.

The circuit functionality can be understood as I have explained below:

The 360V is achieved by adding 30 nos of 12V batteries in series, which constitutes 430V level as the full charge threshold, and 330V as the full discharge level threshold.

The battery bank voltage needs to be controlled within these limits for ensuring a safe charging environment for the batteries.

The opamp circuit is configured for implementing the above mentioned high voltage charging control as indicated in the diagram.

The 360 V is stepped down to a suitable proportional level for the opamp sensing input at its inverting pin#2 applied via a 10 k preset. This is done through a potential divider network using a 220 k and a 15 k resistor.

The non-inverting pinout of the opamp is clamped at 4.7 V through a zener diode for providing a reference to its complementing pin#3 sensing input.

The operating supply voltage for the opamp pin#7 is extracted from one of the batteries associated with the negative line of the system.

Preset Adjustment

The preset is adjusted such that the opamp output pin#6 just becomes high and triggers the transistor when the battery voltage reaches at around 430V.

The above action forces the relay to operate and cuts off the supply charging voltage to the battery bank.

As soon as this happens, the battery voltage tends to go down a bit which normally prompts the opamp to trigger back the relay ON, however the presence of the feed back resistor connected across pin#6 and pin#3 holds the opamp situation, and prevents this from happening.

This is also called the hysteresis resistor which temporarily latches the opamp to a certain voltage range depending on the value of this resistor (Rx).

Here it must be selected such that the opamp stays latched until the voltage of the battery bank drops to about 330V, after which the opamp could be expected to restore the relay back in its N/C position initiating the charging process for the batteries.

You'll also like:

  • 1.  Simple SCR Battery Charger Circuit
  • 2.  3 Smart Li-Ion Battery Chargers using TP4056, IC LP2951, IC LM3622
  • 3.  Battery Full Charge Indicator Circuit using Two Transistors
  • 4.  Parallel Battery Charger Circuits Explained
  • 5.  Precise Battery Capacity Tester Circuit – Backup Time Tester
  • 6.  Single Transformer Inverter/Charger Circuit

Filed Under: Battery Charger Circuits Tagged With: Battery, Charger, High, Voltage

About Swagatam

I am an electronics engineer and doing practical hands-on work from more than 15 years now. Building real circuits, testing them and also making PCB layouts by myself. I really love doing all these things like inventing something new, designing electronics and also helping other people like hobby guys who want to make their own cool circuits at home.

And that is the main reason why I started this website homemade-circuits.com, to share different types of circuit ideas..

If you are having any kind of doubt or question related to circuits then just write down your question in the comment box below, I am like always checking, so I guarantee I will reply you for sure!

Previous Post: « How to make simple a LI-FI (Light Fidelity) Circuit
Next Post: Hospital Room Call Bell Circuit for Alerting Nurse with a Button Press »
Subscribe
Notify of
guest


guest
62 Comments
Inline Feedbacks
View all comments

Primary Sidebar

circuit simulator image

Subscribe to get New Circuits in your Email

Categories

  • Arduino Projects (90)
  • Audio and Amplifier Projects (132)
  • Automation Projects (17)
  • Automobile Electronics (101)
  • Battery Charger Circuits (83)
  • Datasheets and Components (106)
  • Electronics Theory (143)
  • Free Energy (37)
  • Games and Sports Projects (11)
  • Grid and 3-Phase (19)
  • Health related Projects (25)
  • Home Electrical Circuits (12)
  • Indicator Circuits (15)
  • Inverter Circuits (89)
  • Lamps and Lights (142)
  • Meters and Testers (71)
  • Mini Projects (46)
  • Motor Controller (64)
  • Oscillator Circuits (28)
  • Pets and Pests (15)
  • Power Supply Circuits (108)
  • Remote Control Circuits (50)
  • Security and Alarm (64)
  • Sensors and Detectors (103)
  • Solar Controller Circuits (59)
  • Temperature Controllers (42)
  • Timer and Delay Relay (49)
  • Transmitter Circuits (29)
  • Voltage Control and Protection (40)
  • Water Controller (36)

Other Links

  • Privacy Policy
  • Cookie Policy
  • Disclaimer
  • Copyright
  • Videos
  • Sitemap

People also Search

555 Circuits | 741 Circuits | LM324 Circuits | LM338 Circuits | 4017 Circuits | Ultrasonic Projects | SMPS Projects | Christmas Projects | MOSFETs | Radio Circuits | Laser Circuits | PIR Projects |

Social Profiles

  • Twitter
  • YouTube
  • Instagram
  • Pinterest
  • My Facebook-Page
  • Quora
  • Stack Exchange
  • Linkedin
  • Recent Comments

    • Swagatam on Understanding Capacitor Codes and Markings
    • Swagatam on Mains High Low Voltage Protection Circuit with Delay Monitor
    • Swagatam on 3 Phase Induction Motor Speed Controller Circuit
    • Swagatam on Smart Bathroom Exhaust Fan Controller Circuit with Sensors
    • James Williams on 3 Phase Induction Motor Speed Controller Circuit

    © 2025 · Swagatam Innovations