Automatic Triac Changeover Circuit for Inverter/Mains

The post discusses a simple automatic triac changeover circuit from mains to inverter and vice versa for ensuring a well isolated inverter mains transfer for the load. This is to eliminate the possibility of the grid energy meter recording the inverter supply consumption in the utility bill. The idea was requested by Mr. Puneet

Circuit Objectives and Requirements

  1. Its great pleasure to get guided by you. Thank you so much.
  2. I was looking out for SPDT/DPDT SSR required to work 24*7 with minimal power/heat.
  3. My residence is basically divided into two sections which are powered by two different 230v AC phases. Lets name them P1 and P2.
  4. Now, the problem starts when a power inverter comes into picture. The inverter is powered by P1 but powers some electricals in other section which is basically powered by P2.
    With new energy meters, which basically calculate the consumption based on difference between incoming phase and outgoing neutral currents, do calculate the load on both energy meters.
  5. I thought of putting a SSR based phase selector (not mechanical one due to wear and tear on 230v AC load).
  6. The SPDT NC would would connect invertor, whereas NO would connect load to P2. P2 would power the trigger i.e. operate the relay.
  7. So when P2 is available, it would ON the relay and NO would connect powering load with P2, whereas in absence of P2 would switch off relay connecting invertor line to section load.
  8. I am finding it difficult to find some SPDT/DPDT SSR which fulfill my requirement or if any are very costly, so if you can help me with any such circuit.

Assessing the Circuit

Thanks Puneet, basically you want a solid-state SPDT changeover relay which will switch the load from mains to inverter during mains failure and vice-versa when mains returns....this will also prohibit the energy meter from registering the inverter current in its calculation while inverter is running.

I hope I have understood it rightly??

This would also require isolating the neutral so that the energy meter is completely disconnected from the load and the neutral line during mains absence.

Isolating the Neutral

That's perfectly right!

I would beg to differ on the last point - isolation of neutral on mains absence. The reason being the live wire from invertor is directly connecting in section2 and not from energy meter. Since mains is off, i believe the energy meter circuit may not be powered to sense the consumption on neutral side.

I may be wrong in my assumption. So if you feel neutral also needs isolation, please design the circuit accordingly. That was some confusion i had, thus i always mentioned SPDT/DPDT in my request.

Let me know if any more information required.

Thank you ๐Ÿ™‚


I think DPDT could be slightly more complex with a triac based relay, so it's better to stick with an SPDT variant.

I think you could give the last SPDT circuit in the above article a try, with some modifications.


Automatic Triac Changeover Circuit for Inverter/Mains


Here you can join the lower leads of the triac together and connect with the load (the other end of the load connected with the neutral), while the upper leads could be separated and joined with the respective phases (mains, and inverter)

for supplying the circuit under both the situations we could use two 0.33uF separately, one connected with the mains, and the other with the inverter phase.

Just for my clear understanding, I am confused with the last statement about 0.33uf capacitors, where exactly should I put them across?

Few queries:

1. do I need to add heat sinks to the triacs? 2. I believe the trigger is 5v dc sourced from mains. Should I go for transformer supply to drop 230v ac to 5/6v ac and rectify? If you have any specific design for that please guide me. 3. If not dc in above, do I need to take special care for zero crossing for the optocoupler.

I had redrawn the circuit diagram as per your instructions, but could not upload it here.

Hi Puneet, you can send the diagram to my email

the trigger can be 5V or 12V that is not critical.

In the last diagram, the 0.33uF can be see connected with the mains, you can connect a second 0.33uF from the zener side and connect its other end with the inverter mains...this would enable the transistor circuit to operate in both the situations, during absence and presence of mains.

Zero crossing triggering is not required according to me.

Modified Triac Changeover Design

Hello Swagatam,

Please find attached the modified circuit diagram. I hope i have modified it as per your instructions. Let me know your valuable feedback.

I would also request you to suggest the best possible option to get the 5v DC signal at trigger end. should i look out for transformer-less supply or transformer one.

With respect to the 0.33uF capacitors, i doubt if i have made the right connection or should this be coming from the lower ends of the triacs, as here the two phase inputs would collide.

I was trying to build an end to end circuit where i can clearly demarcate 4 (or 5) inputs



Hello Puneet,

the 0.33uF connections are OK, the current on the other side of 0.33uF will be quite low and won't harm each other.

the lower side of the triacs are supposed to be connected only with the load not with the circuit negative, the negative of the circuit should be connected directly with the neutral. rest all looks OK.

Thank you so much for your quick reply.

I hope this one is correct. My bad luck i did not see the phases being shorted to ground/neutral at lower triac ends ๐Ÿ™

Would this circuit be capable for handling around 500 watts of load?

Hello Puneet,

Now it looks OK, and hopefully should function as per the expectations.

The trigger to the opto could be extracted from either of the mains supply, that is either from the inverter mains or the grid mains, depending on which one is selected for the activating the triac changeover circuit.

The input of the opto could be connected with these supplies through a 68K 5 watt resistor.

Similar Circuit Ideas

Lead Acid Battery Charging, Maintenance Tips The post discusses some of the crucial parameters related to lead acid battery charging, maintenance tips for ensuring longer life to the device. The ...
Arduino 3 Phase Inverter Circuit with Code In this post we learn how to make a simple microprocessor Arduino based 3 phase inverter circuit which could be upgraded as per user preference for op...
Sine Wave Inverter using Bubba Oscillator Circuit In this post we learn how to make a simple sine wave inverter using bubba oscillator sine wave generator. The idea ws requested by Mr. Ritwik Naudiyal...
Convert Audio Amplifier into Pure Sinewave Inverte... If you are not too keen in understanding the deep technical aspects of a true sine wave power inverter, yet want to build it within a couple of hours,...
How Crank Flashlights Work A crank flashlight basically works by hand cranking a permanent magnet motor, which generates electricity for illuminating the attached LEDs. Mot...

22 thoughts on “Automatic Triac Changeover Circuit for Inverter/Mains”

  1. Ok Sir it is a changeover switch between the grid and the GENERATOR. nd i want the genetator to be automatically switch off when ever the grid is present

  2. I don’t even know the specifications Sir i just seen it on youtube an it make sense this is the reason why i brought it to you. because i believe that you can able to do it. . And you are the knowledgeable person you know how to do it. If you do it with any specifications i will appreciate Sir

  3. Hi Swagatam, Ive been reading reading your posts but I haven’t tried anyone out though. I want to build this circuit but I want to be sure can it work on Inductive loads? and how can I increase the current capacity or power rating of the circuit to drive about 70amps for instance. thanks boss

    • Hi Abdul, It will support all types of loads, for 70 amps you will have to use a 100 ANP triacs…make sure to check the system using a smaller triacs and smaller loads first

    • I have already repeated many times in the same article that I cannot help any further with the codes since I have already provided all the information whatever I had in the article and in another external limked article. But inspite of the instructions strangely the readers keep asking for the codes…

  4. thankew u sir
    can we calculate connected load with any instrument without any electricity …to feeds its reading like ardunio and make some change or take action based on connected load.

    only condition is that when there is not any electricity is connected to load .bcoze we can calculate load by wattmeter and ammeter but i need such a thing whuch works without electricity connected to load .

    • I don't think that's possible because an inductive load may have different characteristic when it is in the powered state, and when it is not powered…so measuring the current without powering it may give incorrect, or misleading readings

  5. sir is there any afordable cheap circuit or device or system which can trigger a relay at given time or after certain tym periods like on 6 pm or after 13hour . i hope you got it

  6. hi SWWAGATAM have made the circuit and my trigger is from inverter mains via 100k/2w but the 1k which connects to collector of bc547 and gate of triac blows ,help me about it, thanks

    • Hi Kakumba…that means your 0.33uF capacitor is not good and it's sending in high current to the BC547 circuit…make sure it is not allowing more than 0.02 amps…or try a new capacitor…0.22uF/400V will also work

    • sorry you said 100k/2 watt…that's even strange because 100k will never allow a current that might cause the 1K to blow….and moreover current from 100k will never be enough to trigger the triacs.

  7. dear Mr swagatam,
    I'm an I.T student, I will be grateful if you can help me with a circuit diagram for a 1.5 kva inverterย  for my project
    (Including the oscillator ,change over,cutoff, and MOSFET stages). Sir also, can you throw more light of the transformer stage(including the calculation for the winding for both pri &sec) and also the gauge.i I'll be grateful if my request is given a consideration.

Leave a Comment